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Overview
Our supplementary material covers the following content:
• Additional Implementation Details.
• Discussion on Evaluations.

A. Additional Implementation Details
We provide all implementation details of our data process-
ing in Section A.1, shape data statistics of the dataset we
use for our experiments in Section A.1, and the human per-
ceptual study setup in Section A.3. Further, we discuss the
principles behind the selection of evaluation data for assess-
ing the Penetrate, Float, and Skate metrics in Section A.4,
and the complete text inputs for qualitative results listed in
the main manuscript in Section A.5.

A.1. Data Processing
Generating Additional Training Data. We elaborate on
our process to generate additional shape data that we use
to train the SA-VAE. We leverage the Attributes to Shape
(A2S) model from SHAPY [7], which provides a method
to link linguistic shape attributes with SMPL-X [18] shape
coefficients. SHAPY [7] identifies 30 linguistic attributes,
of which 12 are gender-specific attributes that apply either
to females or males. By using a discrete 5-level Likert scale
ranging from 1 (strongly disagree) to 5 (strongly agree),
the model can predict the beta shape parameters of SMPL-
X [18].

To diversify the shape data for training, we generate
1,000 additional shapes for each gender. Initially, we
randomly sample discrete values within the range [1,5] for
each attribute. We then obtain the predicted SMPL-X [18]
shape beta parameters from the A2S model. Given that
the primary source in HumanML3D [9] is derived from
the AMASS [1, 3, 5, 8, 11, 12, 14–17, 20, 23–25] dataset,
which is extended from the SMPL-H [19] model, it is nec-
essary to align the body types in our dataset accordingly.
To achieve this, we employ the conversion tools provided

by SMPL-X [18] to transform the SMPL-X [18] shape beta
parameters into SMPL-H [19] beta parameters.

Unifying Gender-Specific Parameters. Within the
entire training set, we include 2,000 additional shape beta
parameters alongside the original 449 shapes from the
HumanML3D dataset [9]. However, these shape beta
parameters are gender-specific, implying that female and
male models possess distinct body model topologies, which
can hinder generalization in model training. Simply put, the
same shape β parameter values can produce vastly different
bodies for females and males. To address this issue, we
propose converting all gender-specific shape β parameters
to a neutral gender format. This approach allows all the
shape β values to share the same shape space, thereby
enhancing the generalization capability of our model.

Labeling Shape β Parameter Values. We use the largest
current text-to-motion dataset, HumanML3D [9], for our
experiments, which is composed of two large-scale datasets:
HumanAct12 [4] and AMASS [1, 3, 5, 8, 11, 12, 14–
17, 20, 23–25]. However, HumanAct12 [4] does not
provide beta values, only the 3D joint locations. To obtain
the complete training data, we use SMPLify [2] to fit the
shape β parameters from the joint locations, obtaining
approximate shape β values.

Constructing Shape Description Input. We list the
shape description template in Table A.1, where < · > de-
notes a placeholder to be replaced with body measurement
attributes. These attributes include height, arm and leg
lengths, and the circumferences of the chest, waist, and
hips. For each training data point, we randomly select one
template to form the shape description, which we then com-
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Table A.1. Template for Shape Description Data Input. This table provides a structured format for users to input detailed
measurements of human body attributes. It includes fields for height, weight, body type, and specific measurements for chest, waist, hips,
arms, and legs, ensuring comprehensive data collection for shape-aware motion synthesis.

1. A <gender> standing <height> cm tall, with a chest circumference of <chest> cm, waist circumference of <waist>
cm, and hip circumference of <hip> cm. The length of the arm is <arm> cm and leg height is <leg> cm.

2. This individual, a <gender>, has a height of <height> cm. Their body measurements include a chest of <chest>
cm, a waist of <waist> cm, and hips measuring <hip> cm. The arm extends <arm> cm and the legs are <leg> cm
long.

3. The <gender> stands <height> cm tall. They have a chest circumference of <chest> cm, a waist of <waist> cm,
and hips that measure <hip> cm. The arm and leg measurements are <arm> cm and <leg> cm, respectively.

4. Describing the <gender>: They are <height> cm in height, with body measurements that include a chest of <chest>
cm, a waist of <waist> cm, and hips of <hip> cm. Additionally, their arm measures <arm> cm, and their leg height
is <leg> cm.

5. Here is a <gender> with a height of <height> cm. Their measurements are as follows: chest <chest> cm, waist
<waist> cm, and hips <hip> cm. The lengths of the arm and legs are <arm> cm and <leg> cm respectively.

6. You see a <gender> whose physical stature includes a height of <height> cm. Notable measurements are a chest
circumference of <chest> cm, waist circumference of <waist> cm, and hip circumference of <hip> cm, with an
arm length of <arm> cm and leg height of <leg> cm.

7. A <gender> with these dimensions: <height> cm tall, chest <chest> cm, waist <waist> cm, hips <hip> cm, arm
<arm> cm, and leg height <leg> cm.

8. Consider a <gender> who is <height> cm tall. They have a chest of <chest> cm, waist of <waist> cm, and hips of
<hip> cm. Their arm is <arm> cm long, and their legs measure <leg> cm in height.

9. Profile of a <gender>: Height of <height> cm, with a chest measurement of <chest> cm, waist of <waist> cm, and
hips spanning <hip> cm. The arm and leg heights are <arm> cm and <leg> cm, respectively.

10. A detailed look at a <gender>: They stand <height> cm tall, and feature a chest of <chest> cm, a waist of <waist>
cm, and hips measuring <hip> cm. Their arm length is <arm> cm, and the leg height is <leg> cm.

bine with the original motion description as the final text
input for our method.

A.2. Shape Data Statistics
We report the shape data statistics for the HumanML3D
dataset [9], which comprises 14,616 motion sequences to-
taling 28.59 hours of motion. The dataset includes 449
unique subjects sourced from AMASS [1, 3, 5, 8, 11, 12,
14–17, 20, 23–25], with a demographic distribution of 263
male and 186 female subjects. Additionally, the dataset
contains 1,191 subjects from HumanAct12 [4]. Follow-
ing previous works, we utilize the first 10 principal com-
ponents of the shape parameters to construct the shape β.
We present the mean and standard deviation of each princi-
pal component in the shape β in the dataset in Figure B.1,
and for the dataset including the additional 2,000 shape data
in Figure B.2, to illustrate the diversity of body shapes used
for training.

A.3. Human Perceptual Study
We provide the layout shown to participants on Amazon
Mechanical Turk during our perceptual study in Figure B.3.
For the baseline methods that do not synthesize shape β pa-

rameters simultaneously, we employ SMPLify [2] to fit the
shape β parameters and render those animations for the user
study.

A.4. Evaluation Data
We describe our method for filtering evaluation data to com-
pute the Penetrate, Float, and Skate metrics. Following the
approach of HUMOS [22], we exclude motion sequences
where the lowest joint is higher than 0.25 meters from the
ground in at least 5 frames. This procedure ensures that
all motions sequences we evaluate on are motions on the
ground plane. We perform this filtering because motion se-
quences off the ground plane (which are typically supported
by other objects and scene components, e.g., stairs) create
ambiguities in defining the above metrics.

A.5. Full Text Inputs for Qualitative Results
Here, we provide the full text input for the qualitative results
we show in the main manuscript (Figure 4). We encour-
age reviewers to view additional comparative results on the
webpage.
• Top row. Consider a man who is 182 cm tall. They have

a chest of 101 cm, waist of 90 cm, and hips of 96 cm.



Table A.2. Physical Plausibility Comparison and highlight the best and second-best results.

Methods Shape Input Arbitrary Penetrate Float Skate Bone Length
Capability Length (cm) ↓ (cm) ↓ (%) ↓ Variances ↓

Real − − 0.0±0.000 0.0352±0.000 8.110±0.001 0.0±0.000

SA-VAE (Recon.) − − 0.0289±0.000 0.2090±0.000 6.443±0.001 0.623±0.000

TM2T [10] ✗ ✓ 0.1485±0.001 0.2456±0.001 8.554±0.001 5.339±0.032

T2M [9] ✗ ✓ 0.0939±0.001 0.6805±0.001 4.250±0.060 1.352±0.096

MLD [6] ✓ ✗ 0.3091±0.001 0.6558±0.011 9.313±0.153 2.695±0.053

MotionDiffuse [27] ✓ ✗ 0.2401±0.001 0.2703±0.001 7.710±0.010 0.138±0.002

MDM [21] ✓ ✗ 0.1011±0.001 1.7101±0.032 8.523±0.150 0.666±0.010

MotionGPT [13] ✓ ✓ 0.6986±0.017 0.2245±0.007 7.889±0.078 2.271±0.018

T2M-GPT [26] ✓ ✓ 0.1789±0.004 0.5241±0.001 6.162±0.044 1.176±0.007

Ours ✓ ✓ 0.0268±0.001 0.2658±0.008 6.143±0.123 0.625±0.002

Table A.3. Guo et al. [9] Benchmark Comparison. and highlight the best and second-best results.

Methods Shape Input Arbitrary RPrecision ↑
FID ↓ MMDist ↓ Diversity ↓

Capability Length Top1 Top2 Top3

Real - - 0.469±0.002 0.665±0.002 0.769±0.003 0.001±0.000 3.217±0.007 0.000±0.000

SA-VAE (Recon.) - - 0.454±0.003 0.645±0.002 0.749±0.002 0.125±0.001 3.308±0.006 0.101±0.097

TM2T [10] ✗ ✓ 0.374±0.003 0.559±0.003 0.673±0.002 1.671±0.018 3.843±0.009 0.937±0.091

T2M [9] ✗ ✓ 0.408±0.003 0.592±0.003 0.697±0.002 1.230±0.023 3.597±0.007 0.430±0.058

MLD [6] ✓ ✗ 0.383±0.002 0.571±0.003 0.680±0.003 0.882±0.024 3.736±0.008 0.020±0.070

MotionDiffuse [27] ✓ ✗ 0.426±0.002 0.616±0.002 0.723±0.003 0.563±0.010 3.392±0.006 0.320±0.070

MDM [21] ✓ ✗ 0.317±0.006 0.490±0.006 0.599±0.007 0.461±0.045 4.180±0.035 0.320±0.083

MotionGPT [13] ✓ ✓ 0.128±0.002 0.208±0.002 0.271±0.002 1.020±0.034 7.055±0.002 0.389±0.095

T2M-GPT [26] ✓ ✓ 0.394±0.003 0.576±0.003 0.683±0.002 0.269±0.010 3.710±0.008 0.190±0.061

ShapeMove (Ours) ✓ ✓ 0.413±0.008 0.601±0.005 0.705±0.005 0.198±0.015 3.533±0.016 0.117±0.131

Table A.4. Multimodality.

Method MModality

T2M-GPT 1.428±0.055

MotionGPT 8.534±0.232

Ours 1.894±0.114

Their arm is 56 cm long, and their legs measure 77 cm in
height. The person demonstrates a motion like a person
walks forward while twisting their torso side to side.

• Bottom row. This individual, a female, has a height of 168
cm. Their body measurements include a chest of 103 cm,
a waist of 91 cm, and hips measuring 111 cm. The arm
extends 53 cm and the legs are 71 cm long. The person
demonstrates a motion like a person walks backwards and
stops.

Table A.5. Additional VAE Comparisons

Method FID ↓ Bone Length Diff. (mm) ↓ Jitter Diff. (m/s2) ↓
MLD [6] 0.239 85.26 22.58
SA-VAE (Ours) 0.125 45.88 31.49

B. Discussion on Evaluations

We elaborate further on the evaluation metrics we use and
the corresponding results. For text-motion alignment and
quality, we adhere to the evaluation protocol proposed in
Guo et al. [9]. We compute all results with a 95% confi-
dence interval, obtained from 20 repeated runs, and report
the results in Table A.2 and Table A.3.

We train the text and motion encoder to be shape-aware,
following the guidelines in Guo et al. [9]. The text encoder
utilizes a self-defined vocabulary. Therefore, we retain its
original settings and input only motion descriptions. Con-
sequently, in the Guo et al. [9] benchmark, the R-Precision



and Multimodal Distance metrics are designed to assess the
correlation between motion descriptions and the generated
motions.

Note that for the diversity metric, closer values to real
motions indicate better performance. Thus, the term listed
in the paper represents the absolute difference from the real
motion. Another metric proposed in Guo et al. [9] for mea-
suring diversity is MultiModality, which computes the dis-
tance between motion features. We present the results in Ta-
ble A.4. Higher values indicate better performance on this
metric. However, we find that it might not accurately reflect
diversity, as indicated by MotionGPT [13] scoring signifi-
cantly higher than others. Since MultiModality is computed
by generating multiple motion sequences for a single text
description and then calculating the average Euclidean dis-
tances between paired motion features, we suspect that the
high scores may be due to poor alignment with the text in-
put, as suggested by the low R-precision scores. Therefore,
we have omitted this metric in the main manuscript but in-
cluded it in the supplementary material for completeness.

We also extend our evaluation to include non-VQ VAEs
for a more comprehensive assessment. In comparisons with
the MLD VAE [6] (Table A.5), we observe that while non-
quantizing VAEs might capture finer motion details (jit-
ter difference), they underperform in encoding shape infor-
mation (bone length difference) and overall motion quality
(FID).
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Figure B.1. Shape Data Statistics in HumanML3D. We show the mean and standard deviations of the shape β parameters to indicate
the diversity of body shapes available in the base dataset.
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Figure B.2. Shape Data Statistics in HumanML3D and Additional Synthetic Shape Data. We show the mean and standard deviations
of the shape β parameters to indicate the overall diversity of body shapes in the augmented dataset.



Figure B.3. Layout of the Perceptual Study. We show the layout with the collapsible menu item “Instructions” on the left and the body
of the study on the right. The body consists of the text descriptions at the top, the reference body shape (ground truth body shape
corresponding to the shape description) and the two animations to compare in the middle, and the Q&A block at the bottom.
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