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1. Proof of Theorem 1
Let’s write the assumptions again here:

Assumption 1. The Gaussian sensing matrix Φ ∼
N (0, I /M). The sensing rate δ = M/N ∈ R(0, 1), where
M,N → +∞. The denoising function ηt(·) is Lipschitz
continuous, with t ∈ N.

Assumption 2. The neural network pθ(xt−1 |xt) is a per-
fect denoiser, meaning pθ(xt−1 |xt) ≡ q(xt−1 |xt,x0).
Consequently, xt ∼ N (

√
ᾱt x, (1− ᾱt) I) for all t ∈ N.

Assumption 3. A perfect Gaussian filter exists and is
represented by Dt(·). The distribution q(Dt(dt)|dt) =
N (

√
ᾱt x, (1 −

√
ᾱt) I), where dt ∼ N (

√
ᾱt x, (1 −√

ᾱt) I /δ).

AMP gives the following iterative formula to reconstruct
the image with the iteration starts from t = +∞ and ends
when t = 0, and the final answer x0 will be converged to
ground truth:

ut = y−Φxt +ut+1 divηt(ht+1)/M

ht = ΦTut +xt

xt−1 = ηt(ht)

(1)

and the iterative formula approximately follows the follow-
ing state evolution:

ht ∼ N (x, σ2
t I /δ)

σ2
t−1 = E

{
[ηt(ht)− x]2

} (2)

Let ot(ut+1,ht+1) := ΦT ut+1 divηt(ht+1), and the
AMP iterative formula in Eq. (1) can be rewritten by the
following formula:

st = xt −ΦT(Φxt −y)

ht = st +ot(ut+1,ht+1)

xt−1 = ηt(ht)

(3)

To avoid any confusion of symbols, herein we rewrite
Eq. (3) as follows:

s̃t = x̃t −ΦT(Φx̃t − y)

ht = s̃t + ot(ut+1,ht+1)

x̃t−1 = ηt(ht)

(4)

where the state evolution of the above formula is as follows:

ht ∼ N (x, σ̃2
t I /δ)

σ̃2
t−1 = E

{
[ηt(h̃t)− x]2

} (5)

We define ηt(ht) := pθ(xt−1 |Dt(
√
ᾱt ht))/

√
ᾱt−1, and

in light of Assumption 2 and 3, it is known that
pθ(xt |Dt(

√
ᾱt ht))/

√
ᾱt−1 ∼ N (x, 1−ᾱt−1

ᾱt−1
I). Hence, ac-

cording to Eq. (5), we have σ̃2
t−1 = 1−ᾱt−1

ᾱt−1
. Let xt :=

√
ᾱtx̃t, st :=

√
ᾱts̃t, and substitute into Eq. (4), we obtain:

st = xt −
√
ᾱt Φ

T(Φx̃t − y)
√
ᾱt ht = st +

√
ᾱtot(ut+1,ht+1)

xt−1 = pθ(xt−1 |Dt(
√
ᾱt ht))

(6)

and the state evolution can be rewrite as follows:
√
ᾱt ht ∼ N (

√
ᾱt x, ᾱt σ̃

2
t I /δ)

σ̃2
t−1 = E

{
[pθ(xt−1 |Dt(

√
ᾱt ht))/

√
ᾱt−1 − x]2

}
=

1

ᾱt−1
E
{
[pθ(xt−1 |Dt(

√
ᾱt ht))−

√
ᾱt−1 x]

2
}

(7)
define σt :=

√
ᾱtσ̃t, we can get the following equation:

√
ᾱt ht ∼ N (

√
ᾱt x, σ

2
t I /δ)

σ2
t−1 = E

{
[pθ(xt−1 |Dt(

√
ᾱt ht))−

√
ᾱt−1 x]

2
} (8)

Finally, define rt := Dt(
√
ᾱtht), and substitute into

Eq. (6) and (8) to obtain the following Theorem:

Theorem 1. Suppose Assumption 1, 2, and 3 hold, we de-
duce the iterative representation of diffusion message pass-
ing (DMP) algorithm as follows:

st = xt −
√
ᾱt Φ

T(Φxt −y)

rt = Dt[st +
√
ᾱtot(ut+1,ht+1)]

xt−1 = pθ(xt−1 | rt)
(9)

where ot(ut+1,ht+1) := ΦT ut+1 divηt(ht+1) .Moreover,
it is possible to write out its state evolution:

rt ∼ N (
√
ᾱt x, σ

2
t I)

σ2
t−1 = E

{
[pθ(xt−1 | rt)−

√
ᾱt−1 x]

2
} (10)
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