
Appendix
A. Visualization

A.1. Qualitative results

Fig. A1 and Fig. A2 showcase qualitative comparisons with
Atlantis on the D3 and D5 subsets of the Sea-thru [2] dataset
and the SQUID [3] dataset. All models trained on the Syn-
TIDE dataset, including AdaBins [4], NeWCRFs [8], Pixer-
Former [1], and MIM [7], consistently present better visual
results on underwater images compared with those trained
on the Atlantis dataset. Especially in the results of the first
two close-shot images in Fig. A1, the model trained on the
Atlantis dataset fails to clearly show the difference in dis-
tance between the ball and the background. In contrast, our
results match the ground truth closer, more distinctly dis-
playing the contrast between the ball and the background in
the image.

MIM-A MIM-TGT PixelFromer-A PixelFromer-T

NewCRFs-A NewCRFs-TImage AdaBins-A AdaBins-T

MIM-A MIM-TGT PixelFromer-A PixelFromer-T

NewCRFs-A NewCRFs-TImage AdaBins-A AdaBins-T

Figure A1. Qualitative results on the Sea-thru dataset [2]. ’-A’
and ’-T’ denote models trained on Atlantis [9] and Our SynTIDE
dataset, respectively. The depth estimation results are notably im-
proved after training on our dataset. Due to the original ’Image’
being extremely dim, the content is hardly visible. To clearly dis-
play the content of ’Image’, we adjust its contrast and brightness
in this figure. These adjustments do not apply to any inference or
evaluation processes at the code level.

A.2. Zero-shot underwater depth data generation

Thanks to our training strategy, which fine-tunes the pre-
trained text-to-image model [5] using LoRA [6] with a mi-
nor low rank, we retain its strong generalization ability to
a certain extent. This enables TIDE to generate underwater
depth data for scenes and objects never seen during train-
ing, as shown in Fig. A3. Even when the provided text
prompts contain objects that do not exist in the real world,
such as Godzilla, TIDE can still generate seemingly rea-
sonable underwater image-depth pairs. However, this ca-

NewCRFs-A

NewCRFs-A

MIM-A

NewCRFs-T

NewCRFs-T

MIM-T

Image

Image

GT PixelFromer-A

AdaBins-A

AdaBins-A

PixelFromer-T

AdaBins-T

AdaBins-T

MIM-A MIM-TGT PixelFromer-A PixelFromer-T

Figure A2. Qualitative results on SQUID dataset [3]. ’-A’ and ’-T’
denote models trained on Atlantis [9] and Our SynTIDE dataset,
respectively. The depth estimation results are notably improved
after training on our dataset.

pability is particularly challenging for Atlantis [9], which
requires the depth map in advance as a condition.

B. Pseudo-code
To demonstrate the simplicity of TIDE and each compo-
nent, we provide pseudo code with PyTorch in Listing 1,
Listing 2, and Listing 3. These codes are simple and easy
to implement. The complete code to reproduce the experi-
ments will be made available before the conference.



An underwater photo of a Godzilla.

An underwater photo of a table.

An underwater photo of a UFO.

An underwater photo of an avocado.

An underwater photo of 
a huge underwater glacier.

Realistic, luxurious underwater hotel.

An underwater photo of a red crocodile.

An underwater photo of a penguin.

An underwater photo of a cat.

Figure A3. Representative zero-shot image-depth pairs synthesized by TIDE present strong consistency, diversity, and generalization.
Images of relevant categories are not included in the training data.



1 from torch import nn
2

3 class TAN(nn.Module):
4 def __init__(self, nhidden=1152, hidden_dim=256, time_hidden_dim=6912):
5 super().__init__()
6

7 self.gamma_mlp = nn.MLP(input_dim=nhidden, hidden_dim=hidden_dim, output_dim=nhidden)
8 self.beta_mlp = nn.MLP(input_dim=nhidden, hidden_dim=hidden_dim, output_dim=nhidden)
9 self.time_adaptive_scale = nn.Sequential(

10 nn.Linear(time_hidden_dim, 1),
11 nn.Sigmoid(),
12 )
13

14 def forward(self, x, time_embed, modal1_feats, modal2_feats=None):
15 if modal2_feats is not None:
16 gamma1, beta1 = self._forward(modal1_feats)
17 gamma2, beta2 = self._forward(modal2_feats)
18

19 gamma = (gamma1 + gamma2) / 2
20 beta = (beta1 + beta2) / 2
21 else:
22 gamma, beta = self._forward(modal1_feats)
23

24 sigma = self.time_adaptive_scale(time_embed)
25 out = x * (1 + sigma * gamma) + sigma * beta
26 return out
27

28 def _forward(self, modal_feats):
29 gamma = self.gamma_mlp(modal_feats)
30 beta = self.beta_mlp(modal_feats)
31 return gamma, beta

Listing 1. TAN PyTorch code. When multiple modal features are input, they share the MLP weights and average the multiple sets of
gamma and beta.

1 from torch import einsum
2 import torch.nn.functional as F
3

4 def ILS_Attention(attn, image_feats, text_feats, cross_attn_map=None):
5 query = attn.to_q(image_feats)
6 key = attn.to_k(text_feats)
7 value = attn.to_v(text_feats)
8

9 if cross_attn_map is not None:
10 hidden_states = einsum('b h l n, b h n c -> b h l c', cross_attn_map, value)
11 else:
12 hidden_states, cross_attn_map = F.scaled_dot_product_attention(query, key, value)
13

14 return hidden_states, cross_attn_map

Listing 2. The ILS Attention PyTorch code. ILS Attention is a component within the Transformer/MiniTransformer block in Listing 3.



1 from torch import nn
2 from pixart import PixartTransfomer, Transformer, MiniTransformer
3

4 class TIDE(PixartTransfomer):
5 def __init__(self, transfomer_layer=28, mini_transformer_layer=10):
6 super().__init__()
7 self.t2i_transformer = Transformer(num_layer=transfomer_layer)
8 self.t2d_transformer = MiniTransformer(num_layer=mini_transformer_layer)
9 self.t2m_transformer = MiniTransformer(num_layer=mini_transformer_layer)

10

11 self.D2M_tan_blocks = nn.ModuleList(
12 [
13 TAN(nhidden=1152, hidden_dim=256)
14 for _ in range(mini_transformer_layer)
15 ]
16 )
17 self.M2D_tan_blocks = nn.ModuleList(
18 [
19 TAN(nhidden=1152, hidden_dim=256)
20 for _ in range(mini_transformer_layer)
21 ]
22 )
23 self.DM2I_tan_blocks = nn.ModuleList(
24 [
25 TAN(nhidden=1152, hidden_dim=256)
26 for _ in range(mini_transformer_layer)
27 ]
28 )
29

30 self.dense_blocks_inject_pos = [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
31

32 def forward(self, hidden_states_image, hidden_states_depth, hidden_states_mask,
33 hidden_states_text, time_embed
34 ):
35 for block_index, t2i_block in enumerate(self.t2i_transformer.blocks):
36 hidden_states_image, implicit_layout = t2i_block(
37 hidden_states_image,
38 encoder_hidden_states=hidden_states_text,
39 time_embed=time_embed,
40 )
41 if block_index in self.dense_blocks_inject_pos:
42 id = self.dense_blocks_inject_pos.index(block_index)
43

44 hidden_states_mask = self.D2M_tan_blocks[id](
45 hidden_states_mask, time_embed, hidden_states_depth
46 )
47

48 hidden_states_depth, _ = self.t2d_transformer.blocks[id](
49 hidden_states_depth,
50 encoder_hidden_states=hidden_states_text,
51 time_embed=time_embed,
52 implicit_layout=implicit_layout,
53 )
54

55 hidden_states_mask, _ = self.t2m_transformer.blocks[id](
56 hidden_states_mask,
57 encoder_hidden_states=hidden_states_text,
58 time_embed=time_embed,
59 implicit_layout=implicit_layout,
60 )
61

62 hidden_states_depth = self.M2D_tan_blocks[id](
63 hidden_states_depth, time_embed, hidden_states_mask
64 )
65

66 hidden_states_image = self.DM2I_tan_blocks[id](
67 hidden_states_image, time_embed, hidden_states_depth, hidden_states_mask
68 )
69

70 image_noise_output, depth_noise_output, mask_noise_output = self.output(
71 hidden_states_image, hidden_states_depth, hidden_states_mask
72 )
73 return image_noise_output, depth_noise_output, mask_noise_output
74

Listing 3. TIDE PyTorch code. The entire code of TIDE will be made available before the conference.



References
[1] Ashutosh Agarwal and Chetan Arora. Attention attention ev-

erywhere: Monocular depth prediction with skip attention. In
Proc. of IEEE Winter Conf. on Applications of Computer Vi-
sion, pages 5861–5870, 2023. 1

[2] Derya Akkaynak and Tali Treibitz. Sea-thru: A method for
removing water from underwater images. In Proc. of IEEE
Intl. Conf. on Computer Vision and Pattern Recognition, pages
1682–1691, 2019. 1

[3] Dana Berman, Deborah Levy, Shai Avidan, and Tali Treib-
itz. Underwater single image color restoration using haze-
lines and a new quantitative dataset. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 43(8):2822–2837,
2020. 1

[4] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.
Adabins: Depth estimation using adaptive bins. In Proc. of
IEEE Intl. Conf. on Computer Vision and Pattern Recognition,
pages 4009–4018, 2021. 1

[5] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze
Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo,
Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of dif-
fusion transformer for photorealistic text-to-image synthesis,
2024. 1

[6] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank
adaptation of large language models. In Proc. of Intl. Conf. on
Learning Representations, 2022. 1

[7] Zhenda Xie, Zigang Geng, Jingcheng Hu, Zheng Zhang, Han
Hu, and Yue Cao. Revealing the dark secrets of masked image
modeling. In Proc. of IEEE Intl. Conf. on Computer Vision
and Pattern Recognition, pages 14475–14485, 2023. 1

[8] Weihao Yuan, Xiaodong Gu, Zuozhuo Dai, Siyu Zhu, and
Ping Tan. Neural window fully-connected crfs for monocular
depth estimation. In Proc. of IEEE Intl. Conf. on Computer
Vision and Pattern Recognition, pages 3916–3925, 2022. 1

[9] Fan Zhang, Shaodi You, Yu Li, and Ying Fu. Atlantis: En-
abling underwater depth estimation with stable diffusion. In
Proc. of IEEE Intl. Conf. on Computer Vision and Pattern
Recognition, pages 11852–11861, 2024. 1


	. Visualization
	. Qualitative results
	. Zero-shot underwater depth data generation

	. Pseudo-code

