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A. Ablation on 3D Position Embedding
Position embedding in the spatial enhancer is a crucial com-
ponent of BIP3D, serving to bridge the gap between 2D im-
age features and 3D space. Table A.1 demonstrates the im-
pact of 3D PE on detection performance. When the 3D PE
is removed, the overall AP decreases by 3.09%.

3D PE Overall Head Common Tail

17.82 23.63 14.34 15.39
X 20.91 27.57 18.77 16.03

Table A.1. Ablation Results of 3D PE.

To more intuitively illustrate that the spatial enhancer
achieves spatial modeling, we visualize the correlations be-
tween 3D position embeddings IPE. As shown in Fig-
ure A.4, it can be observed that embedding correlations ex-
hibit a positive relationship with their 3D positions.

B. Inference Efficiency
We compared the inference speeds of BIP3D and Embod-
iedScan on a 4090 GPU, as shown in Figure A.1. When
considering the point cloud preprocessing time, BIP3D con-
sistently exhibits lower latency than EmbodiedScan, with
a more pronounced advantage when the number of views
is small. When focusing solely on the neural networks,
BIP3D’s inference speed is slower at a higher number of
views; however, when the number of views is reduced to
below 8, BIP3D still maintains an efficiency advantage.

Figure A.1. Latency Comparison, where ‘*’ indicates the inclu-
sion of point cloud preprocessing time, encompassing multi-view
aggregation and down-sampling.

C. Scale-up
To test the impact of increasing model parameters on per-
ception performance, we replaced the backbone with Swin-
Transformer-Base. As shown in Table A.2, compared to
Swin-Tiny, the overall AP improved by 1.21%, with a sig-
nificant increase of 2.74% in long-tail categories. It is
worth noting that GroundingDINO-Base showed an im-
provement from 58.1% to 59.7% over GroundingDINO-
Tiny on COCO benckmark. To further enhance model per-
formance, we incorporated additional training data from the
ARKitScene dataset. This resulted in an additional 1.47%
improvement. These results highlight the positive impact
of both scaling up the model size and enriching the training
dataset on improving detection accuracy.

Backbone ARKit Overall Head Common Tail

swin-tiny 20.91 27.57 18.77 16.03
swin-base 22.12 28.63 18.77 18.77
swin-base X 23.59 30.20 19.59 20.88

Table A.2. Results of Scale-up Experiments.

D. Detail of Camera Intrinsic Standardization
The parameters of standardized intrinsic are derived
from the mean of the training set. Given that we
use undistorted pinhole cameras, the parameters in-
clude [focalu, focalv, centeru, centerv], which are set to
[432.579, 539.857, 256, 256]. Intrinsic standardization may
introduce issues such as pixel loss and zero padding, as
shown in Figure A.2.

E. Model Ensemble
For the model ensemble experiment listed in Table 3 of the
main text, we employ five models. Two of these models
are trained on the entire dataset, utilizing permutation cor-
ner distance loss and Wasserstein distance loss, respectively.
The remaining three models are trained on distinct data sub-
sets: ScanNet, 3RScan, and Matterport3D. The strategy for
model ensemble is 3D NMS with 0.4 IoU threshold.

F. Permutation Corner Distance Loss
For a single 3D bounding box, there are 48 possible per-
mutations of its 8 corner points, denoted as A, as shown
in Figure A.3. Different permutations correspond to dif-
ferent [w, l, h, roll, pitch, yaw] values. Therefore, using



Figure A.2. Images Comparison Before and After Camera Intrin-
sic Standardization. Left: Original, Right: Standardized.

||Bpred−Bgt|| directly as the loss function would result in
incorrect gradients. We propose a permutation corner loss
defined as:

Lbox = min
1≤i≤48

[||A(pred)1 −A(gt)i||2]

G. Model Prediction Visualization
Figure A.5 visualizes the 3D detection results of the model,
demonstrating that BIP3D can effectively handle a variety
of complex indoor scenarios. Even for some objects that
are unannotated, BIP3D is capable of detection, which pro-
vides feasibility for enhancing model performance through
the use of semi-supervised learning in the future. Figure A.6
visualizes the 3D grounding results, illustrating the model’s
capability to identify and locate the specific target desig-
nated by the text among multiple objects of the same class.

H. Algorithm Setting
Table A.3 lists more detailed model configurations and
training parameters. Additionally, we employ two types
of data augmentation during training: 1) applying a ran-
dom grid mask to the depth map, and 2) performing random
cropping on both the images and depth maps.

Figure A.3. The 3D Bounding Box Corners Permutations. For
the same bounding box, there are a total of 48 different corner
point permutation; the corner point order is indicated by numbers,
with red, yellow, and green representing width, length, and height,
respectively.

Config Setting

image backbone swin-transformer-tiny
image neck channel mapper

depth backbone mini-ResNet34
depth neck channel mapper

text encoder BERT-base
embed dims 256
feature levels 4

key points 7 fixed and 9 learnable
feat enhancer layers 6

decoder layers 6
anchor per view 50

max depth D 10
num of points K 64

optimizer AdamW
base lr 2e-4

image backbone lr 2e-5
text encoder lr 1e-5

detection epochs 24
grounding epochs 2

batch size 8
weight decay 5e-4
drop path rate 0.2

λ1 1.0
λ2 0.8
λ3 1.0

dn queries 100
training views 18

test views 50

Table A.3. Model Configurations and Training Parameters.



Figure A.4. Visualization of the Correlations of Position Embeddings. The red boxes on the images indicate the selected target location,
while the heatmaps represent the cosine similarity between all position embeddings and the position embedding of the target location.



Figure A.5. Visualization of 3D Detection Results. The color of the boxes indicates the category.



Figure A.6. Visualization of 3D Visual Grounding. Green boxes represent the ground truth, red boxes represent the predictions, and blue
boxes represent reference objects, such as the ‘bathtub’ in ‘find the bag that is closer to the bathtub’.


