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A. Demo Video

In Demo, we provide six qualitative comparisons between
the previous state-of-the-art (DsHmp [13]) and our GLUS
with the videos in MeViS [9]. Notably, these examples il-
lustrate three challenging aspects of RefVOS: (1) Motion
Understanding: RefVOS models have to distinguish simi-
lar objects with their motions; (2) Global Reasoning: Re-
fVOS models should be capable of realizing global reason-
ing to segment the objects presented only in a short video
clip; (3) Vision-Language Reasoning: RefVOS models
should perform vision-language unified reasoning in com-
plex scenarios. The six examples demonstrate that our
GLUS effectively tackles RefVOS in challenging language-
guided segmentation cases.

B. Implementation Details

This section provides a detailed explanation of the specific
model architectures and workflow of GLUS.

B.1. Model Architectures

Multimodal LLM. The input embeddings for the MLLM
are generated by processing each context and query frame
individually through the vision backbone, VB. Subse-
quently, a vision-to-language projection layer, ¢y _, 1., is ap-
plied to the outputs:

Ftc = ¢V—>L(VB(ItC))a FtQ = ¢V—>L(VB(ItQ))a (A)

where F¢ and FtQ are the features for the context and query
frames. Then MLLM generates the ¢-th segmentation token
as:

(SEG), = LLM([R, F{ v,

FP(SEG), , ¥, (SEG), , ..., F]).

This process follows our global-local unified design, and
we adopt LISA-7B-v1 [19] for the initialization of LLM, pro-
jector ¢y _, 1, and backbone VB.

Mask Decoder. Our utilization of the mask decoder fol-
lows the style of LISA [19] and SAM-2 [32]. After ob-
taining (SEG),, GLUS first extracts the hidden embedding
hy from the penultimate layer of the MLLM. A language-
to-vision projection layer, ¢y, is then applied to hy to
generate a prompt for the mask decoder, h;. Next, a vision
encoder, Enc, processes the query frames to produce en-
coded features. Using the prompt and the encoded features,
the mask decoder, Dec, is applied to the query image I, Q

(B)

generating its corresponding mask M;:
he = ¢rv (he), My = Dec(Enc(I?),h) ()

In our experiments, we initialize the weights of ¢,
projection layer with LISA-7B-v1 and utilize SAM-2 to ini-
tialize image encoder Enc and mask decoder Dec..

Memory Bank. Each time a mask M, is generated,
GLUS is able to encode it using a memory encoder, Encyy,
and stores the resulting feature F; in MemBank. For mem-
ory attention, we adopt the design of SAM-2 [32], selecting
features from up to m masks in MemBank. Attention is then
applied to these features along with the decoded image to
produce the input for the mask decoder:

FM — Ency;(M;), MemBank.Push(FM)

Ft]\fl = Concat(FM, FM ... FM)
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D)

FEH = MemAttn(Enc(Iﬁl), EM
My = DeC(Ftau hiy1)
where {i,};", is the selected masks from memory bank

following SAM-2. We adopt SAM-2’s memory attention
module and memory encoder in our experiments.

B.2. GLUS Training Details

This section provides detailed training configurations for
GLUS (Sec. 4), as summarized in Table A. During train-
ing, only the MLLM (fine-tuned with LoRA [15]), mask de-
coder, and projection layers are trainable. DeepSpeed [31]
is employed to improve training efficiency. The sampling
frequency in the memory bank is set to 1 during training to
maximize its utilization. The training process takes approx-
imately 25 hours on 4 NVIDIA A100 GPUs (40 GB each),
with 3000 steps, 10 gradient accumulation steps and a batch
size of 2 per device.

The training objective incorporates cross entropy (CE)
loss, mask loss (comprising mask DICE loss and mask BCE
loss), and contrastive loss, as described in Sec. 4.3. The
corresponding weights, Ace, Agice, Abee, and A, are used
to compute their respective averages.

B.3. GLUS Inference Details

During inference, GLUS employs a sliding window ap-
proach with a size of 4 and a stride of 1 for the query frames.
The mask of the last query frame is used as the context of
the next group of query frames. The sampling frequency for
the memory bank is set to sample once per 3 frames, and a
maximum of 7 masks are used in mask attention. Addi-


https://youtu.be/hCMah_rzVSE

Config Value
context frame num 4
question frame num 4
input resolution 224
features downsampling rate 4
optimizer Adam
optimizer momentum 1,82 =0.9,0.95
optimizer weight decay 0.0
learning rate 3e-4
LoRA rank 8
Ace 1.0
/\tline 0.5
/\hce 2.0
Act 0.1
batch size 80
gradient accumulation steps 10
warmup steps 100

Table A. Implementation details of GLUS training process.

tional ablation studies on sampling frequency are provided
in Sec. C.

B.4. Selector training and inference

Data Annotation To generate the pseudo-labels for fine-
tuning the selector model, we use GLUS to generate the
masks on the training set and compute the IoU of the masks.
To mitigate the risk of overfitting, we adopt an early-stop
model (trained for 500 steps) rather than the final model
(trained for 3000 steps). For faster training of the selector,
we label only half of the training set as the training data for
selector fine-tuning.

Implementation Details We use Chat-Univi [17] as the
base Video-QA model. Similar to the design of recent
grounding LLMs [3, 19, 45, 54], we introduce a special
token, (SCORE), into the LLM vocabulary and employ an
MLP to project the corresponding embeddings. During
training, we randomly sample 8 frames to represent video
context and produce the score for each query frame. The
hidden embedding of the score token, hs, is generated as:

hs = Selector ([P, F<, F, (SCORE)]) (E)
where P represents the language prompt. The hidden em-
bedding of (SCORE) is then projected to score s through an
MLP layer. The selector fine-tuning objective consists of
two components: Lg, an Lq loss that supervises the frame
score s using the IoU pseudo-labels y of the query frame,
and L, a cross-entropy loss that supervises the text outputs
of the LLM:

5 = dproj (hs),
Ls=ly—s|, (F)
£all = £txt + /\s . Es

For efficient training, the selector LLM is fine-tuned with
LoRA [15], while the MLP layer is fully trainable. Further

details on selector training are provided in Table B.

Config ‘ Value
context frame num 8
query frame num 1
optimizer Adam
optimizer momentum 1,82 =0.9,0.95
optimizer weight decay 0.0
learning rate 3e-4
LoRA rank 8
As 1.0
batch size 80
gradient accumulation steps 10
MLP layer num 3

Table B. Implementation details of selector training process.

Inference and Propagation The selector is trained to pre-
dict a confidence score for each frame in a test-time video,
reflecting the importance of a frame with respect to the
given expression. During inference, we first select the frame
with the highest score as the key frame for each video-
expression pair. We then use GLUS to initiate tracking from
the selected frame in both forward and backward propaga-
tion directions and iteratively generate the predictions for
the entire video.

C. Additional Studies

Sampling Ratio of Training Datasets As noticed in pre-
vious works [41], balancing the training data is critical for
vision language models. We observe the same when train-
ing GLUS with Ref-Youtube-VOS and MeViS. For this ab-
lation, we use the GLUS with memory bank and global-
local unified reasoning enabled, and train it across different
sampling ratios of the two datasets. The performance and
optimization steps needed for convergence are in Table C.
For balanced performance and training efficiency, we select
1:1 as the standard sampling rate for our models.

Data Scarcity of MLLM in Video Segmentation

Fine-tuning LLMs requires large amounts of data, es-
pecially for video MLLMs [20, 40, 41]. However, video
data is scarce, especially when requiring fine-grained an-
notations like RefVOS. With the default training steps
3000, the training of GLUS without extended datasets av-
eragely spans ~11.6 epochs over the whole frames set,
which contrasts the common 1 or 2 epochs SFT sched-
ule for vision-language models fine-tuned with sufficient
data [17, 20, 22, 24, 40, 41].

This led to noticeable overfitting with more training
steps, according to the change of validation set performance
(MeViS valid_u) in Fig. A. Although the object contrastive
loss alleviates the overfitting issue, they all suffer from a
significant drop at the final steps. We hypothesize that such
a data scarcity problem constrains the performance of video
MLLMs, especially when they don’t have tailored designs



MeViS MeViS RefYTB Best

MeViS : RefYTB (validu)  (valid)  (valid)  Step

2:1 60.8 49.0 64.1 1500
1:1 59.7 49.5 65.2 1500
1:2 59.6 49.3 65.6 2500
4:15 59.6 49.9 65.5 3000

Table C. Ablation studies on sampling ratio of MeViS:Ref-
Youtube-VOS for training. We report the performance (J &F)
and the training steps needed for convergence. underline denotes
the second best. We select 1:1 as the standard ratio for GLUS to
balance performance across datasets and training efficiency. (The
4:15 ratio is adopted from [45].)

such as hierarchical perception [13]. We hope our obser-
vation can encourage more explorations on scaling up the
video segmentation data.

Memory Bank Sampling Frequency The VOS mem-
ory bank is integrated into our framework and optimized
end-to-end to enhance global-local reasoning capabilities
in complex scenarios (Sec. 4.2). We evaluate the impact
of memory stride in Table D, where a longer stride priori-
tizes global reasoning, while a shorter stride emphasizes lo-
cal consistency. We show that GLUS performs stably with
varied memory bank strides, because of its design unifying
both global and local reasoning.

Sampling Frequency ‘ MeViS (valid_u)
w/o MB \ 58.3

59.3
59.7
59.7
59.7
59.7

NoREN RO, BRUS I

Table D. Ablation studies on the sampling frequency of memory
bank. We select 3 as the default stride of the sampling frequency,
following SAM2. “MB”: Memory Bank.

D. Limitations and Future Works

Our work mainly focuses on the fine-tuning phase of a mul-
timodal large language model for referring video object seg-
mentation. Therefore, the visual backbone and LLM are
limited in understanding the video. From this perspective,
meaningful future work would start from an MLLM pre-
trained for video understanding to further enhance the mo-
tion understanding.

In addition, our computational resources heavily con-
strain our context lengths for an MLLM and limit the ca-
pability for video understanding. Concretely, we have to
downsample the visual features and can only sample 4 con-
text frames to summarize the video content, which might
not cover the critical contexts if motions are happening fast.
We hope combining our GLUS design with longer context
windows can further unleash its potential.
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Figure A. Curves of MeViS valid_u performance (J &F) with dis-
tinct training steps. The figure clearly demonstrates noticeable
overfitting in the model. “GLU”: Global-local unification, “MB”:
End-to-end memory bank, “OC”: Object contrastive loss.

Finally, we notice that the amount of data has become a
bottleneck for video reasoning (Fig. A). Therefore, future
work can focus on improving the data scale and quality,
where we hope the benefit of pseudo-labeling from GLUS
can also be of use.
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