HybridGS: Decoupling Transients and Statics
with 2D and 3D Gaussian Splatting

Supplementary Material

1. Positioning of Our Work

In the community, there are currently two predominant ap-
proaches for tackling the challenge of novel view synthesis
in wild images with different complexities. We distinguish
these approaches according to the primary datasets they uti-
lize and provide a detailed comparison in Tab. 1.

NeRF On-the-go [7] processes casually captured images
that lack inter-frame continuity, with the goal of eliminating
the interference from transient objects to reconstruct statics.

Photo Tourism [10] gathers photo collections from the
web, resulting in completely unconstrained conditions with
more complex lighting variations and increased foreground
interference. It focuses more on integrating appearance em-
bedding to model the photometric changes in the scene.

In summary, our method belongs to the first category and
aims to decompose transients and statics from casually cap-
tured images in scenes with minimal illumination changes.
Experiments have demonstrated our state-of-the-art results
on two widely used benchmark datasets, such as NeRF On-
the-go [7] and RobustNeRF [8]. Handling varying lighting
conditions will be our future work as discussed in the paper.

2. More Discussions
2.1. 2D Gaussians

The fitting capability of 2D Gaussians is inherited from 3D
Gaussians. Given J, the Jacobian of the affine projective
transformation, and W, the viewing transformation, the 3D
Gaussians can be projected to 2D image plane and blended
through a fast, differentiable a-blending process to render
2D images following the Eq. 3 and Eq. 4. Therefore, the 2D
Gaussians can be viewed as the projection of 3D Gaussians.

During training, the warm-up allows 3DGS to establish
an initial model of the entire scene. It is noteworthy that in-
tuitively, the residuals between the results of 3DGS render-
ing and the ground-truth would potentially model transients.
However, the 3DGS itself is constrained only by RGB loss,
therefore, the transient objects from different viewpoints are
eventually fitted into the 3D Gaussians, leading to less ef-
fective fitting of static scenes with vanilla 3DGS. We ad-
dress this issue by incorporating additional 2D Gaussians.
During the iterative training stage, the 2DGS learns the
residuals per view, focusing more on the unique elements of
each image. The output soft mask or matting can effectively
direct 3DGS to concentrate on areas with smaller residu-
als, which represent the common and shared elements of the
scene. In the final joint training stage, we perform a deep

Table 1. Comparison of NeRF On-the-go and Photo Tourism.

NeRF On-the-go [7]
Casually captured photos

Photo Tourism [10]
Web photos in the wild

Data source

Photometric Similar lighting Varying lighting over time
Scene Indoor and outdoor scenes Mostly outdoor scenes
Evaluation Statics Statics with their illumination

Related Works | [5, 7, 9] & Our HybridGS [24,6, 11, 12]

Table 2. We conduct ablation studies on a pure static scene Gar-
den from the MipNeRF 360 dataset [1], and Corner, scene that
includes both transients and statics, from the NeRF On-the-go
dataset [7], to explore the potential influence of our designs.

Method Settings Garden Corner
PSNRT  SSIM{ LPIPS| | PSNRT  SSIM} LPIPS|
3DGS 29.323 0924 0.050 | 20.148 0.686 0.202
+ Multi-view 29.572 0925 0.053 | 21.758 0.769 0.147

+ Multi-view + 2DGS | 29.512 0.924 0.054 | 25.020 0.847 0.077

Table 3. Comparison of different number of views in Corner in
multi-view supervision. The best results are highlighted in bold.

Metric | K=1 K=2 K=4 K=8

PSNR | 2430 24.78 25.03 24.87
SSIM | 0.820 0.839 0.847 0.842
LPIPS | 0.123 0.081 0.079 0.077

integration of 2D and 3D Gaussians for fine-tuning. There-
fore, in our method, 3D Gaussians tend to learn the elements
that are consistent across different viewpoints, which we de-
fine as statics. Meanwhile, 2D Gaussians capture image-
specific information, such as dynamic objects and occlu-
sions, referred to as transients.

2.2. Multi-view Supervision

We have further investigated the performance of multi-view
3DGS in different scenarios in Tab. 2. To be specific, we
select the static scene Garden from the MipNeRF 360 [1]
dataset and the dynamic scene Corner from the NeRF On-
the-go [7] dataset. The results indicate that in static scenes,
employing multi-view supervision has minimal impact on
achieving the best results for novel view synthesis. How-
ever, during training, it is noted that 3DGS tends to over-fit
the training views, leading to a gradual decline in both vi-
sual quality and metric performance for novel views. In
contrast, multi-view 3DGS demonstrates more stable con-
vergence and effectively reduces the over-fitting problem.
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Figure 1. Qualitative results compared to 3DGS at each randomly selected training step. For HybridGS, the training steps for each
stage are: Warm-up: 0~1,010, Iterative Training: 1,010~40,400, Joint Training: 40,400~60,600. Notably, this scene contains 101 images.
Referring to Fig. 3, before the warm-up step (the top left), during the initial rough training phase, both our and 3DGS results are somewhat
blurry. However, since we adopt a multi-view strategy, the occluded parts in our results are slightly clearer. As training progresses, by the
2953rd iteration (the top central), 3DGS reaches its optimum. Nevertheless, at this point, the background in the transients remains quite
blurry for 3DGS, whereas our approach has already transitioned into the iterative training phase, allowing us to model static elements more
accurately. Moving forward, we maintain stable training (top right and bottom left), largely due to our introduction of 2D Gaussians to
decouple transients from statics. This effectively prevents over-fitting to transients that 3DGS begins to experience, leading to diminishing
rendering quality. By the 44535th iteration (the bottom central), during the joint optimization phase, our results reach their optimum. The

bottom right shows the results at the end of the training process.

In dynamic scenes, obviously, 3DGS is prone to over-
fitting, which adversely affects performance in novel view
synthesis. On the other hand, multi-view 3DGS benefits
from mutual supervision in areas visible to multiple views,
significantly improving the visual results.

Unlike standard multi-batch 3DGS, we focus on multi-

view-visible regions for better efficiency and effectiveness.
Here, K = 1 means training transients on a single im-
age without considering co-visible areas. An ablation study
shows that using K = 4 views achieves the best perfor-
mance across metrics.
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Figure 2. Visualization on 6 remaining scenes of NeRF On-the-go [7] dataset.

2.3. Comparison with in-the-wild methods

As illustrated in the Sec | In-the-wild methods focus on
modeling photometric variations in Photo Tourism differs
from our goal of removing randomly captured transients,
evaluated on NeRF On-the-go and RobustNeRF. We com-
pared with SOTA in-the-wild approaches on NeRF On-
the-go dataset using open-source codes with default set-
tings. Our method outperforms methods such as WildGaus-
sians [5], demonstrating its effectiveness.

3. More Implementation Details
3.1. Training and Storage

For the training of 3D Gaussians, we perform the densifi-
cation of 3D Gaussians during the warm-up stage. Then,
in the subsequent stages, we maintain a constant number
of existing 3D Gaussians and focus solely on optimizing
their parameters. For 2D Gaussians, we maintain a constant
number 10,000 per image throughout the entire training pro-
cess without any densification. During the iterative training
process, while optimizing 3DGS with 2DGS held fixed, we
binarize the uncertainty mask obtained from 2DGS into Os
and 1s using a threshold value of € = 0.1.



Table 4. Comparison with other state-of-the-art in-the-wild methods. The best results are highlighted in bold. * indicates that the

results are reproduced from the official implementation.

Dataset(ratio) ‘ On-the-go low.(5%)

| On-the-go medium.(17%) | On-the-go high.(26%)

| PSNRT  SSIM{ LPIPS, | PSNRT SSIMt  LPIPS| | PSNRf SSIM{ LPIPS)

NeRF-W [6] 17.63 0451 0.518 | 18.88 0.620 0.397 14.69 0.366 0.648
Gaussian in-the-wild* [12] | 20.32 0.601 0.256 | 22.46 0.769 0.146 2220 0.685 0.246
WildGaussians [5] 20.62 0.657 0.235 | 22.80 0.811 0.092 23.02 0.770 0.172
Ours 21.42 0.684 0.206 | 23.50 0.827 0.092 23.05 0.768 0.114

We used an early version of Taming-3DGS (24.09) for
baseline, which speeds up training but does not optimize
storage. Our method is more efficient in both storage and
training time. Specifically, baseline 3DGS requires many
small Gaussians to overfit view-dependent transients, taking
over 150 epochs on densification and resulting in longer op-
timization time and higher memory usage. In contrast, our
method represents the static scene with a densification pro-
cess for only 10 epochs, while decomposing transient parts
into 2D Gaussians per image, with minimal additional stor-
age and reduced optimization time (Ours 10.8 mins vs Base-
line 12.1 mins). Compared to 3DGS, our method use 2D
Gaussians to model transients instead of forcing 3D Gaus-
sians to fit them, significantly reducing both storage and
computational requirements, showcasing its superior effi-
ciency in both training and testing phases.

3.2. Datasets

We follow the same training/testing split and resolution set-
tings as the official rules in NeRF On-the-go [7] and Robust-
NeRF [8]. Specifically, for the NeRF On-the-go dataset, we
downsample images from most scenes by 8x to 504 x 378.
Note that Arcdetriomphe and Patio are downsampled by 4 x
to 480 x 270. For the RobustNeRF dataset, all scenes are
downsampled by 8x, with Android and Statue resized to
503 x 377, and Crab and Yoda to 431 x 431.

4. More Visualization Results
4.1. Training Process

To better demonstrate the changes during our training pro-
cess, we select IMG_7195 . JPG of Corner from NeRF On-
the-go dataset as example, visualizing the statics and tran-
sients during different training stages and comparing them
with vanilla 3DGS in Fig. 1. As training iterations increase,
3DGS tends to gradually integrate transient elements into
the static components, rendering the residuals being almost
incapable of capturing transient contents. In contrast, our
HybridGS effectively distinguishes transients from statics
over time, leading to consistent improvements in Fig. 3.
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Figure 3. The PSNR on testing set of Corner during train-
ing process. Training steps for each stage of our HybridGS:
0~1,010, 1,010~40,400,

Joint Training : 40,400~60,600. We use the same data as in
Fig. 1. Note that, 3DGS reaches its optimum at step 2953, but
as training continues, 3DGS tends to overfit transients in dynamic
scenes, leading to gradual decline in performance. In comparison,
our method is able to train steadily. This directly validates the
statements in Sec. 2 and 4.1.

Warm-up : Iterative Training :

4.2. More Scenes

In addition to providing metrics and results on the 6 com-
monly used scenes of NeRF On-the-go [7] dataset, we also
present the visualization results on the remaining scenes as
shown in Fig. 2. These complex scenes include some varia-
tions in lighting and shadows. We find that in addition to re-
moving dynamic objects, our statics can also eliminate ele-
ments lacking specific semantics, such as shadows of pedes-
trians (in Drone and Train Station) and cars (in Arcdetriom-
phe and Train). This separation of non-semantic transients
illustrates that our method is fundamentally a versatile, low-
level and semantics-free scene decomposition approach, ef-
fectively highlighting its generality and robustness.

4.3. More Datasets

We apply our method on Photo Tourism [10] dataset, which
consists of unconstrained photo collections with photomet-
ric variations. As shown in Fig. 4, we have some intriguing
and reasonable observations. First, the statics generated us-
ing 3D Gaussians are rendered under an average light con-
dition derived from the training images, similar to the dif-



fuse lighting on an overcast day. Additionally, we discover
that besides modeling dynamic objects, 2D Gaussians also
capture photometric differences in our transients, since the
illumination difference is indeed a per-image characteristic.
This finding perfectly aligns with the perspective we pre-
sented in Sec. 2 that transients can capture unique aspects
of each image, broadening the scope for future research to
further isolate photometric information from 2D Gaussians.

5. Limitations

HybridGS may classify sparsely occurring static elements
as transients, especially in sparse scenes. Similarly, issues
can occasionally arise with illumination and shadows lack-
ing multi-view consistency. A potential solution is to de-
compose the input into reflectance and shadow layers, and
focus on intrinsic colors, laying the foundation for applying
3DGS in more complex scenes.
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Figure 4. Visualization on Photo Tourism [10].
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