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Abstract

This supplementary document shows additional details of our
method and more results. We refer readers to our webpage,
which shows more results that allow for easy comparisons
with the baseline methods on all scenes we use.

A. Relighting and Object Insertion Results

Our method estimates accurate surface material and spa-
tially varying HDR illumination from LDR images, enabling
various applications such as relighting and object insertion.
We provide the qualitative results of real-world scenes in
Figure 1, Figure 2, Figure 3, Figure 6, Figure 7, where we
sample novel camera trajectories and render the scene at dif-
ferent time steps. The results demonstrate effective modeling
of specular reflections on smooth surfaces (like ‘mirror’ and
‘whiteboard’) upon introducing new light sources. Moreover,
our method accurately simulates inter-reflections between
the scene and the inserted objects, significantly elevating
the realism of object insertion. To summarize, we show that
IRIS can render real-world scenes under various illumina-
tion from different viewpoints. For more interactive visual-
izations and comparisons, please check our supplementary
webpage https://iris-ldr.github.io.

B. Additional Evaluation Results

In addition to physically-based inverse rendering techniques
like FIPT, methods based on neural radiance fields (NeRF)
[7] strive for scene disentanglement by representing indoor
scenes’ incident radiance fields with a 5D network [13] with-
out constraints. Recent NeRF-based approaches like I2-SDF
[15], NeILF++ [14], and NeFII [11], much like FIPT, rely
on pre-calculated irradiance, and focus on surface render-
ing to reconstruct scene materials and/or lighting. However,
these methods typically account for only single-bounce light
transport, leading to compromised quality in both material
and lighting reconstruction. The complete metrics of inverse
rendering are shown in Table 1 and the complete metrics of
novel-view synthesis and relighting are listed in Table 2. Our
method achieves comparable novel-view synthesis results
and outperforms other baselines for relighting. The results
underscore the effectiveness of our method in accurately
decomposing intrinsic elements from LDR images. As for
computational efficiency, the whole training takes 57 mins
on a single RTX 4090, compared to 298 mins for NeILF [13]
and 50 mins for FIPT [12].

Table 1. BRDF-emission comparison on synthetic data. FIPT-
LDR* is provided with the GT emitter mask as additional input.
The best metrics among LDR methods are highlighted in bold.

kd a′ σ Le
Method PSNR ↑ IoU ↑ L2 ↓

Kitchen

Li et al [6] 15.75 12.64 10.15 0.43 1.410
NeILF [13] 16.63 13.73 14.77 — —
FIPT-LDR* 15.77 8.97 5.94 0.58 0.450
Ours 23.22 17.52 20.35 0.58 0.203

FIPT-HDR [12] 34.34 27.05 24.55 0.88 0.010

Bedroom

Li et al [6] 18.90 15.10 11.38 0.34 2.784
NeILF [13] 16.85 13.99 16.03 — —
FIPT-LDR* 18.38 9.60 5.82 0.77 0.245
Ours 26.44 20.95 26.47 0.77 0.043

FIPT-HDR [12] 28.98 25.86 23.53 0.92 0.004

Livingroom

Li et al [6] 16.78 14.71 11.42 0.17 3.610
NeILF [13] 16.06 13.86 15.95 — —
FIPT-LDR* 11.59 8.93 4.08 0.77 0.240
Ours 18.09 15.45 25.28 0.77 0.103

FIPT-HDR [12] 28.42 27.47 30.44 0.95 0.005

Bathroom

Li et al [6] 15.50 13.60 12.24 0.45 1.351
NeILF [13] 17.85 14.49 21.09 — —
FIPT-LDR* 16.21 11.46 4.12 0.62 0.187
Ours 21.56 17.74 13.43 0.62 0.135

FIPT-HDR [12] 28.06 23.54 26.97 0.68 0.080

C. Qualitative Results of Synthetic Scenes
To verify the effectiveness of inverse rendering, we compare
IRIS with several baselines on synthetic scenes provided by
FIPT [12], which provide ground-truth geometry, material
properties, and lighting. Figure 4 shows the qualitative re-
sults of inverse rendering, including image reconstruction,
material reflectance a′, roughness σ, and emission maps.
While NeILF [13] achieves accurate rendering, it bakes sig-
nificant shading effects into its diffuse albedo map. Li et al.
[6] generate a noisy BRDF from a single image input. FIPT*
tends to underestimate illumination intensity, overestimating
the reflectance a′ as compensation. In contrast, our method
successfully recovers high-quality HDR emission from LDR
input, resulting in precise intrinsic decomposition.

D. Additional Ablation Study
Our method explicitly models the HDR–LDR conversion
and estimates the CRF from input images, and thus achieves
better inverse rendering quality. To further validate the design
choices, we conduct an ablation study on the CRF modeling
strategy and evaluate inverse rendering from input images
with varying exposure levels, which is collected with the
strategy described in Appendix F. We visualize the CRFs

https://iris-ldr.github.io
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Figure 1. Relighting and object insertion in ‘conference room‘. The inserted new light sources are reflected on the whiteboard surface,
demonstrating the accuracy of the material estimation of IRIS.
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Figure 2. Relighting and object insertion in ‘bathroom‘. The mirror is estimated as a low-roughness surface, and it reflects the new light
sources and enhances the realism of relighting significantly. The inserted object also exhibits reflection of HDR lighting recovered by IRIS.
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Figure 3. Relighting and object insertion in ‘bedroom‘. The Disco ball rotates and casts colorful lights in different directions, creating
realistic relighting results in the real-world scene.
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Figure 4. Intrinsic decomposition of synthetic scenes [12]. From top to bottom, we show reconstruction, material reflectance a′, roughness
σ, and emission maps. For the emission map, we show normalized HDR emission, such that it is not saturated and differences become
visible. With LDR images as input, IRIS successfully recovers the HDR lighting and accurate surface material.
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Figure 5. Novel-view synthesis and relighting results on synthetic scenes [12]. The novel view synthesis results are shown in the left four
columns, and the relighting of the same novel view are shown in the right four columns.

Table 2. Complete quantitative results of novel view synthesis and relighting on synthetic scenes

Kitchen Bedroom Livingroom Bathroom
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NVS

NeILF [13] 29.309 0.910 0.187 29.651 0.944 0.095 34.653 0.959 0.099 26.509 0.783 0.339
I2-SDF [15] 24.993 0.898 0.234 25.845 0.916 0.150 27.955 0.962 0.091 24.967 0.698 0.483
FIPT-LDR* 16.372 0.776 0.381 14.536 0.784 0.389 16.146 0.805 0.361 13.665 0.609 0.616
Ours 29.730 0.916 0.192 28.765 0.940 0.094 31.368 0.954 0.104 28.008 0.802 0.335

FIPT-HDR [12] 29.059 0.924 0.180 27.670 0.940 0.095 28.524 0.951 0.109 29.788 0.792 0.358

Relight

Li22 [6] 21.755 0.815 0.381 23.662 0.851 0.342 21.631 0.841 0.395 22.887 0.747 0.475
FIPT-LDR* 11.932 0.715 0.283 13.132 0.701 0.334 9.198 0.710 0.345 12.240 0.694 0.473
Ours 23.818 0.873 0.143 25.483 0.892 0.166 18.478 0.906 0.127 23.664 0.856 0.254

FIPT-HDR [12] 27.597 0.886 0.115 28.411 0.878 0.155 32.543 0.964 0.078 27.497 0.881 0.208
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Figure 6. Comparison with Li et al [6] and NeILF++ [14].
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Figure 7. Relighting and object insertion in kitchen. From top to
bottom, we visualize the reconstruction (1st row), relighting (2nd),
and object insertion (3rd).

IrisFormer [16] After initialization After full optimization

Figure 8. Visualizing albedo a during the training. We show that
leveraging data-driven IRISformer [16] estimation (left) provides
us good albedo initialization (center), and final result is refined with
physically-based rendering model.

Table 3. Ablation of CRF modeling.

PSNR ↑ L2 ↓
Method kd a′ σ CRF

Constant exposure 24.24 19.11 27.42 4.074
Mean CRF ḡ 23.61 19.55 15.25 4.240
Gamma 1/2.2 23.65 20.05 15.72 3.683
Full model 26.82 23.43 26.63 1.363

estimation with different modeling techniques in Figure 9,
corresponding to Table 3. The results show that from input
images captured with varying exposure, our method can



Figure 9. CRF comparison visualization. The blue dash lines are
the ground-truth CRF, and the red lines are the estimated CRF after
the optimization. We compare with three variants of CRF modeling
settings. We show that the full model with varying exposure and
learnable CRF model can approximate the ground truth quite well.

recover ground-truth CRF, demonstrating the effectiveness
and importance of CRF modeling. We parametrize the CRF
as a continuous and monotonically increasing function across
the domain (0, 1), sample 1024 points between 0 and 1, and
calculate the L2 distance between the function values and
the ground truth. We compare with three CRF alternatives:
(1) constant exposure input, (2) Mean CRF ḡ (the mean
CRF from 201 empirical CRF functions measured in the real
world [2]), and (3) Gamma 1/2.2 (g(x) = x1/2.2, as used
in FIPT [12]). Our method outperforms the single exposure
approach, suggesting the benefits of using varying exposure
values to enhance dynamic range. It also achieves better
results than constant CRF functions, justifying joint CRF
optimization’s merits.

E. Factorized Light Transport
We follow the rendering equation [3] to model physically-
based light transport for realistic rendering:

Lo(x,ωo)=Le(x,ωo)+

∫
Ω+

Li(x,ωi)f(x,ωi,ωo)dωi, (1)

where Lo is the radiance observed along a ray (x,ωo) for a
3D position x and a direction ωo, Le is the emission term,
Lr =

∫
Ω+ Li(x, ωi)f(x,ωi,ωo)dωi is the reflectance term,

and f(x,ωi,ωo) is the BRDF. While Li encapsulates recur-
sive incident radiance computation, we represent spatially-
varying materials using the Cook–Torrance BRDF [1]:

f(x,ωi,ωo) =
kd(x)

π
(n · ωi)+ +

F ·D ·G
4(n · ωo)

, (2)

where D(h,n, σ(x)) describes the distribution of microfacet
orientations, G(ωi,ωo,n, σ(x)) encodes the masking and
shadowing effects between microfacets, and F (ωi,h,ks(x))
is the Fresnel reflection term. The recursive integral in Equa-
tion (1) is computationally expensive and usually approxi-
mated with Monte–Carlo path tracing [3, 5] with multiple
bounces. The rendering equation can be accelerated by fac-
torizing the BRDF term from the integral [4, 9, 10]:

Lr(x,ωo)=kdLd(x)+ksL
0
s (x,ωo, σ)+L1

s (x,ωo, σ), (3)

Table 4. Notation table.

Symbol Description

(·)+ dot product clamped to positive value
ωi incident light direction
ωo outgoing light direction
h half vector (ωi + ωo)/∥ωi + ωo∥2
n surface normal
x 3D position

a(x) surface albedo (base color)
m(x) surface metallicness
σ(x) surface roughness
kd(x) diffuse reflectivity a(x)(1−m(x))
ks(x) specular reflectivity a(x)m(x) + 0.04(1−m(x))
D(·) GGX normal distribution
F (·) Schlick’s approximation of Fresnel coefficients
G(·) Geometry (shadow-masking) term

where we decompose the reflectance term into a diffuse
shading term Ld(x)=

∫
Ω+ Li(x,ωi)

(n·ωi)+
π dωi, as well as

two specular terms

L0
s (x,ωo, σ) =

∫
Ω+

Li(x,ωi)
F0DG

4(n · ωo)
dωi, (4)

L1
s (x,ωo, σ) =

∫
Ω+

Li(x,ωi)
F1DG

4(n · ωo)
dωi, (5)

where F0 =1−F1 and F1 =(1−h · ωi)
5. kd(x) is diffuse

reflectance and ks(x) is specular reflectance calculated from
the BRDF. L∗

s is further approximated by linearly interpolat-
ing the shading maps pre-computed at various roughness σ
levels: L∗

s(·, σ) = LERP({L∗
s(·, σi)}6i=1, σ), where {σi}6i=1

is uniformly sampled between (0, 1). With the factorization
formulation, the shading maps Ld, {L0

s (·, σi),L
1
s (·, σi)}6i=1

can be pre-computed and allow for more efficient and stable
optimization of material properties and HDR lighting.

F. Implementation Details
To clarify the equations in the paper, we describe the math-
ematical expressions and associated physical meanings in
Table 4.

Varying exposure data generation. In real-world pho-
tography pipelines, exposure levels are adjusted by manipu-
lating camera settings, such as shutter speed, aperture size,
and ISO, to capture bright and dark regions. While the FIPT
dataset [12] assumes single exposure and utilizes a sim-
plistic camera response function (CRF) model defined as
CRF(x) = x1/2.2, our approach simulates a capturing pro-
cess that is both more realistic and challenging. To create
LDR images of synthetic scenes for CRF metric calculation,
we split the HDR images of the same scene into five expo-
sure levels {∆ti}5i=1, s.t. ∆ti < ∆ti+1, where the brightest
HDR image corresponds to ∆t0, and conversely, the darkest
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Figure 10. Failure cases.

to ∆t5, effectively mimicking an auto-exposure mechanism.
Subsequently, we apply each exposure level to the HDR im-
age and convert it into LDR format with the CRF derived
from real-world sensors [2].

Direct illumination Le(x). We first identify the mesh
faces {fi} of emitters with the emitter mask Me(x) defined
on the mesh faces. We associate a learnable 3-dimensional
parameter for each face: e(f) ∈ R3, representing the emitted
light radiance. These parameters are then optimized during
the HDR emission restoration phase.

BRDF. The surface material is represented as a neural field:
(a,m, σ) = F(x), the model architecture of which is based
on Instant-NGP [8].

Shading Baking. Intuitively, the ray tracing continues if it
encounters a non-emissive, specular surface (identified by a
roughness threshold of 0.6), and stops otherwise. The radi-
ance at the endpoint adheres to Eq. 11 in the main paper. The
view-independent term LSLF(x) effectively approximates the
global illumination on diffuse surfaces, which also expedites
the rendering process. This is because rays typically reach
diffuse surfaces within a few bounces, eliminating the need
for further path tracing:

Li(x,ω) = Lend(xn)

n−1∏
i=1

f(xi+1 → xi)

s.t. σ(xi) ≤ 0.6,Me(xi) = 0,∀i < n,

(6)

where {xi}ni=1 are the intersected points along the paths.

G. Limitations
Our emitter mask estimation may be inaccurate, especially
when images are largely saturated. An incorrect mask cannot
be recovered from as masks are not further optimized. Our
CRF model is global, and it cannot capture complex non-
local tone-mapping or while-balance changes. Addressing
these issues would allow for a truly practical method for
inverse rendering, which is left for future work.
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