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Abstract

In the appendix, we provide a comprehensive elaboration of
LEGO-H. Section 1 recaps the positioning of the Humanoid
Hiking task and highlights how LEGO-H departs from the
current trends in humanoid robotics. Section 2 expands on
related work. Section 3 delves into extended ablation stud-
ies, analyzing detailed design choices of each component in
LEGO-H. Section 4 explores the framework’s universality
through experiments on the integration of LEGO-H compo-
nents into alternative frameworks. Section 5 introduces the
simulated environments developed for training and evalua-
tion in this new hiking paradigm. Section 6 specifies imple-
mentation details. Section 7 extends evaluations on critical
questions in humanoid hiking. Lastly, section 8 discusses
future work.
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Figure 1. The conceptual framework differences. We summa-
rize the key conceptual level differences between our work and
current humanoid robot trends for better positioning of LEGO-H.

1. The Positioning of LEGO-H

To better understand LEGO-H’s positioning, we present a
conceptual framework comparison in Fig 1. LEGO-H ad-
vances humanoid robotics by seamlessly integrating navi-
gation and locomotion into a unified policy learning frame-
work (Fig 1(c)). This contrasts with existing pipelines,
which either separate these modules (Fig 1(a)) or reduce en-
vironmental complexity by relying on external commands
for action execution (Fig 1(b)).

This work emphasizes the importance of integrative
development of navigation and locomotion for humanoid
robots to operate effectively in complex real-world environ-
ments. Humanoid hiking provides an ideal testbed to eval-
uate this coordination. LEGO-H, as a baseline prototype,
demonstrates how unified learning fosters self-emerged be-
haviors, enabling dynamic adaptation to diverse trails and
challenges.

2. Additional Related Work

2.1. Hierarchical RL
It is widely adopted to decompose a complex RL prob-
lem into multiple layers of policies [4, 13]. This paradigm
naturally structures in hierarchy, where a decision-
making/control module at higher levels manages temporal
(longer time scale) and behavioral abstraction, while a low-
level module focuses on atomic skills to execute momen-
tary actions in the environment, guided by the high-level
module. HRL includes two main methodologies: (1) ex-
plicit goal setting [9], where the high-level policy assigns
target goals to the low level, enhancing reusability but lim-
iting adaptability, and (2) latent space policies [7], where
high-level module guides the low-level policy by provid-
ing latent sub-goals at a lower frequency, offering flexibil-

ity but often limiting generalization. However, HRL are
generally not end-to-end trainable due to complexity and
distinct objectives of each level. Our LEGO-H, is also hi-
erarchical but avoids strict goal adherence or explicit skill
definitions. Instead, it presents a unified, end-to-end policy
learning framework, where high-level module offers latent
representations and intermediate goals as flexible guidance,
allowing low level to reference them adaptively rather than
following rigidly. This soft guidance supports adaptability
and coherence in complex environments, addressing tradi-
tional HRL limitations.

2.2. Privileged Learning
It is a two-stage technique in robotics, often employed
to address sim-to-real transfer challenges [2, 6, 15]. For
first teacher stage, the robot agent learns an oracle policy
via additionally accessing privileged information from hu-
man demonstrations [2], or GT exteroceptive measurements
from simulator [6]. Since extra information reduces ambi-
guity via precise physical states/terrain details/expert trajec-
tories, the agent could learn more precise actions. However,
as this information is unavailable in real-world deployment,
in the second student stage, the robot agent learns to imitate
the teacher’s behavior using only accessible data 1 through
knowledge distillation. Common distillation losses target
element-wise difference [2], distribution alignment [11] or
latent space alignment [5]. However, studies rarely address
the structural consistency of actions, a critical factor for hu-
manoid hiking, where the robot’s high articulation requires
precise coordination across joints.

3. Additional Ablation Studies
In this section, we delve into the detailed designs of TC-
ViTs (Section 3.1) and the Hierarchical Loss Metric Set
(Section 3.2). Additionally, we example and analyze further
emergent behaviors focusing on the safeness aspect, which
were not covered in the main paper due to space limits.

3.1. Flexibility and Efficiency of TC-ViTs
In this subsection, we further analyze the dynamic adjust-
ment capability of TC-ViTs for near-goal prediction, and
the efficiency behind its recurrent goal adaptation module
design.
Dynamic near-goal adjustments. As discussed in Sec-
tion 3.4 of the main paper, TC-ViTs does not provide a
fixed trajectory that the locomotion module must rigidly fol-
low. Instead, it predicts several near-future goals, dynami-
cally adjusting them based on the robot’s current state. Only
the nearest goal is passed to the locomotion module as soft
guidance, preventing long-term error accumulation in nav-
igation decisions, and enabling flexibility and adaptability

1It often includes proprioception, user commands, and visual sensor
inputs.
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Figure 2. Dynamic adjustments of near goal predictions. Snap-
shots from left to right show a robot traversing mixed terrains
along a trail. The predicted near goals g1, g2, g3 dynamically adapt
to the robot’s current state, reflecting real-time adjustments to its
navigation decisions. Bubble size represents the predicted local
navigation direction (from large to small).

in response to changing environments. Here, as a comple-
mentary, in Fig 2, we illustrate how these goals dynamically
adjust as the robot progresses through a trail with mixed ter-
rains, demonstrating the TC-ViTs’ responsiveness.
Why Recurrent Goal Adaptation? As mentioned in the
main paper, this module, implemented via a GRU and
grafted at the end of TC-ViTs – integrates motor actua-
tion and physical body states, enhancing visual cue pro-
cessing with proprioceptive insight. While recent advances
like CausalTransformers (CTs) [12, 17] have shown promis-
ing results in temporal modeling, we intentionally adopt
a GRU-based design due to its better computational effi-
ciency: TC-ViTs has Flops-0.686G/Params-31.25M , while
replacing its GRU to CTs increase to 0.785G/55.92M .
Besides, CTs require significantly more computational re-
sources for sufficient training, leading to performance
degradation under the same memory constraints (Tab. 1).
Since most visual information is already processed by the
preceding ViViT-style encoder, CTs would introduce redun-
dancy in such a later stage. An additional finding is that our
HLM helps improve CTs performance—e.g., reducing CT’s
collision (MEV) from 10.48% to 8.61%.

Table 1. GRU vs CTs at the end of TC-ViTs.

Metrics w GRU w CTs

Success Rate (%) ↑ 68.40± 1.34 27.85± 1.02
TTF (s) ↑ 7.46± 0.17 5.44± 0.34

3.2. How Hierarchical Loss Metric Set (HLM) Work
In this subsection, we further analyze the Hierarchical Loss
Metric (HLM) by addressing two key questions: (1) How

LEGO-H

W TC-ViTs

Figure 3. Qualitative ablation on with/without HLM. Snapshots
from right to left depict two time steps of a robot traversing a
hurdle obstacle. The top row illustrates behaviors without HLM,
where unsafe movements lead to right leg collisions with the hur-
dle. The bottom row showcases behaviors with HLM, exhibiting
coordinated and structurally rational actions that ensure stability
and successful traversal with safe clearance.

does the structural rationality of actions impact the safety
of the robot’s movements? (2) Is a vanilla VAE sufficient
to capture and reflect the rationality of the robot’s actions?
Through these investigations, we aim to provide deeper in-
sights into the design choices and contributions of HLM for
promoting self-coordinated and safe humanoid movements
across complex trails.
Ablation on w/wo HLM. We show the quantitative com-
parison between w/wo HLM in Tab 1 of the main paper with
metric MEV. Here, as a complementary, we show qualita-
tive samples. As shown in Fig 3, while LEGO-H without
HLM achieves successful traversal over the hurdle, the me-
chanical risks are significantly higher. The robot’s right
leg collides with the hurdle during the stepping motion,
and the minimal clearance further demonstrates unsafe and
inefficient movement patterns. In contrast, with HLM in-
corporated, the robot executes structurally rational and safe
movements. It first steps onto the hurdle with its left leg, en-
suring sufficient clearance for the right leg, and then transi-
tions to a stable hop onto the opposite leg. This coordinated
behavior highlights the role of HLM in enabling stability,
safety, and effective traversal strategies.
Vanilla VAE or full HLM? The latent space of a vanilla
VAE is commonly employed for prior regularization, pro-
moting outputs that align with the normal distribution of
the data. This proves effective for tasks like approximat-
ing averages in large-scale or in-the-wild datasets, as seen
in human pose reconstruction [10]. However, vanilla VAE
falls short when structural dependencies and inter-joint dy-
namics are critical, like humanoid robot actions. Specif-
ically, humanoid hiking with safety demands fine-grained



Figure 4. Navigation in blocked paths over different obstacles.
The colored trajectory illustrates the robot’s torso position as it
traverses the trail. Zoomed-in regions highlight distinct navigation
behaviors: when encountering crowded, tall obstacles, the robot
opts to detour, whereas for smaller obstacles, the robot leaps over,
demonstrating adaptive navigation strategies.

understanding of hierarchical relationships of robots’ own
physical mechanism, which vanilla VAE lacks. By contrast,
as demonstrated in Tab 2, full HLM introduces additional
masked reconstruction and hierarchical losses that implic-
itly enforce inter-joint structural rationality, enabling safer
and more efficient robot movement in complex tasks like
humanoid hiking.

Table 2. Ablation of HLM. for best goal completeness;
for most safeness; for best efficiency. The results highlight the
insufficiency of using a vanilla VAE as a prior. Additionally, com-
pared with Tab. 1 in the main paper, the vanilla VAE collapses
actions into average motions. While this slightly improves MEV
compared to the setting without any prior (w TC-ViTs), it sacri-
fices performance across all other metrics.

Metrics full HLM Vanilla VAE

Success Rate (%) ↑ 68.40± 1.34 53.49± 1.61
Trail Completion (%) ↑ 52.78± 1.30 43.00± 0.96

Traverse Rate (%) ↑ 71.96± 2.37 64.52± 1.02
MEV (%) ↓ 7.84± 0.92 9.26± 1.08
TTF (s) ↑ 7.46± 0.17 6.30± 0.15

Time-to-Reach (s) ↓ 4.95± 0.12 6.02±0.05

3.3. Emergent Behavior Analysis
In this subsection, we explore a critical question: How do
robots behave to ensure safety? We will list three exam-
ples, considering both high-level navigation behaviors and
low-level motor skill execution, to show how LEGO-H pri-
oritizes safety in dynamic and challenging environments.
Navigation in blocked paths. As discussed in the main pa-

Crab-like  Behaviour 

Front Jump

(a) long, rugged gully (b) short smooth gully

Figure 5. Behaviors over difference terrains. The robots ex-
hibit diverse integrative navigation and locomotion skills tailored
to varying trail terrains. (a) The robot adopts a lateral "crab" walk-
ing style to navigate a long, rugged gully, maintaining stability
while progressing toward the hiking terminus. (b) The robot faces
the final terminus directly and jumps over a short, smooth gully.
The orange directional lines show the terminus directions.

per Section 4.3, robots typically opt to detour around large,
tall obstacles and skip over smaller ones. Here, we show
the phenomena from another aspect. In Fig 4, the traversed
trajectory shows substantial clearance maintained from tall
obstacles (zoomed-in block: detour over obstacles) and ef-
ficient traversal above smaller ones (zoomed-in block: skip
obstacles). This demonstrates the robot’s ability to priori-
tize collision avoidance while exhibiting adaptive decision-
making based on the encountered environment.
Behavior over difference terrains. In the main paper Sec-
tion 4.3, we discussed how diverse and distinct locomo-
tion skills emerge to tackle different terrains. Here, we
present two examples demonstrating how terrains influence
the robots’ integrative navigation decisions and motor ex-
ecution. As shown in Fig 5: (1) for a long, rugged gully,
the robot adopts a lateral "crab walk" strategy to maintain
balance and progress towards the terminus. (2) For a short,
smooth gully, the robot directly faces the terminus and leaps
over it, showcasing adaptive integrative navigation and mo-
tor behavior responses to varying trail challenges.
Re-balancing. The ability to re-balance is critical for hu-
manoid robots traversing complex trails. As shown in Fig 6,
the robot stumbles due to uneven terrain (red timeline), trig-
gering a sequence of emergent lateral motions that dynam-
ically counteract the imbalance (yellow timeline). After
that, the robot shows seamless coordination between re-
balancing and task continuity (green timeline). This ex-
ample highlights that, rather than relying on predefined re-
covery motions, the robot adapts its behavior dynamically
to the context. Such adaptability underscores the robust-
ness of LEGO-H’s unified learning framework in fostering
emergent, and context-aware integrative navigation and mo-
tor skills with safeness.

4. The Universality of LEGO-H
In this section, we explore the universality of LEGO-H
by demonstrating its flexibility in two ways: (1) integrat-
ing key components like HLM into other policy learning
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Figure 6. Self re-balance. The robot stumbles unexpectedly (red timeline), swiftly adjusts its balance through a sequence of emergent
lateral motions (yellow timeline), and seamlessly regains stability (green timeline).

pipelines, and (2) transferring the entire framework to a
morphologically distinct humanoid robot, Unitree G1, with-
out architecture changes.

4.1. HLM as a Plug-in Supervision
HLM focuses exclusively on maintaining structural simi-
larity between the oracle locomotion policy’s actions and
the student’s, making it agnostic to the student’s frame-
work design. This modularity allows HLM to be seamlessly
integrated as a plug-in supervision component into differ-
ent policy architectures, ensuring structural rationality and
coordination without requiring changes to the underlying
framework. We demonstrate this property by adding it to
EP-H. The results are shown in Tab 3.

Table 3. HLM as a plug-in supervision for other framework.

Metrics EP-H EP-H + HLM

Success Rate (SR) (%) ↑ 28.80± 0.88 35.53± 1.30
Trail Completion (TC) (%) ↑ 25.98± 0.22 30.36± 0.89

Traverse Rate (TR) (%) ↑ 64.16± 0.48 58.23± 0.76
MEV (%) ↓ 12.44± 1.32 10.98± 1.40
TTF (s) ↑ 4.64± 0.13 5.04± 0.16
T2R (s) ↓ 9.79± 0.16 7.80± 0.37

4.2. Transfer to G1 Robot
To further evaluate the universality of LEGO-H, we retrain
the framework on the Unitree G1 humanoid robot without
any architectural modification — demonstrating its agnosti-
cism to specific robot morphology. As shown in Tab 4, two
key observations emerge from this transfer: (1) Framework
generalization: LEGO-H can adapt to G1, despite differ-
ences in body structure and joint configuration from H1.
LEGO-H on G1 preserves reasonable integrative naviga-
tion and locomotion performance. (2) Performance shift.
Compared to H1, G1 exhibits lower performance in gen-
eral. This is primarily due to its shorter leg length and re-
duced camera height, which constrain both physical reach
and perceptual field. Thus, on tasks requiring large clear-
ance—such as jumping over ditches, G1 typically struggles

more. A possible solution to mitigate these limitations is to
extend LEGO-H with effective whole-body control (WBC)
designs, allowing more expressive coordination across the
upper body and the lower body. This could compensate for
morphological constraints and unlock more agile, full-body
responses to complex hiking trails.

Table 4. LEGO-H on Humanoid G1 robot. We list H1’s result as
a reference. The results highlight the universality of our proposed
learning framework for different robot types.

Metrics H1 G1

Success Rate (%) ↑ 68.40± 1.34 63.96± 1.03
Trail Completion (%) ↑ 52.78± 1.30 38.94± 0.63

Traverse Rate (%) ↑ 71.96± 2.37 62.21± 0.97
MEV (%) ↓ 7.84± 0.92 5.33± 0.68
TTF (s) ↑ 7.46± 0.17 7.24± 0.22

Time-to-Reach (s) ↓ 4.95± 0.12 8.10±0.08

5. Simulated Hiking Trail Constructions

To establish a robust testbed for humanoid hiking tasks, we
design diverse trails in the Nvidia Isaac Gym Simulator [8]
using a procedural generation approach. The construction
process is detailed in Section 5.1, while Section 5.2 outlines
the goal and waypoint design methodology.

5.1. Trail Scene Generation
To simulate diverse trail environments for humanoid hik-
ing, we design 16 basic terrain primitives. Each primitive is
extended into multiple variants by randomly sampling ter-
rain properties such as slope, height, and surface friction, as
well as their positions, using a procedural terrain generation
mechanism. These primitives form the foundation for con-
structing five distinct trail types, each presenting a unique
combination of terrain challenges and navigation complex-
ity. Specifically:
• RandomMix trail category features unobstructed views,

testing the robot’s ability to navigate long distances while
adapting multiple motor skills to various mixed terrain



types.
• Ditch category introduces uneven, middle-distance trails

with diverse slopes and gaps, challenging the robots to
decide and execute quick turns and agile leaps.

• Hurdle category includes trails with long, cubic obstacles,
focusing on testing the robot’s ability to avoid foot colli-
sions while navigating middle distances.

• Gap trails with uneven jumping platforms, including
varying gap distances and straight or staggered stones,
evaluating the robot’s balance and jumping ability during
middle-distance navigation.

• Forest trails densely populated with variously sized and
positioned obstacles, simulating obstructed views and
tight navigation spaces. These test the robot’s ability to
detour, effectively traverse crowded paths, and maintain
balance under constrained conditions.
Each trail category covers five hiking difficulty levels,

with additional variants generated through the randomiza-
tion of terrain properties and obstacle placement. These
diversities ensure a comprehensive testbed across a wide
spectrum of challenges. To expand the evaluation scope,
we also construct out-of-domain hiking trails by combining
multiple trail types into complex, long-distance hill scenar-
ios. These trails test the robots’ adaptability, and integrative
capabilities under extended and unpredictable hiking con-
ditions. We show the zero-shot ability of LEGO-H on the
out-of-domain trails in the supplemental video.

5.2. Oracle Navigation Goal Design

The design of expert navigation goals for the oracle stage
follows these criteria:

• Unobstructed-view trails: For trails with clear visibility,
such as RandomMix, expert navigation goals are set as
evenly spaced waypoints within the traversable regions,
aligning directly with the trail direction. These goals en-
sure smooth long-distance navigation.

• Obstructed-view trails: For complex trails like Forest,
navigation goals are dynamically set to detour around ob-
stacles, following feasible paths with a degree of random-
ness to promote diverse path exploration. These goals
maintain sufficient clearance to prevent collisions and en-
courage obstacle-aware navigation strategies.

• Terrain-specific trails: For specialized challenges like
Hurdle, Ditch, and Gap, navigation goals are positioned
to encourage the emergence of specific motor behaviors,
such as agile leaps, balanced stepping, or jumping within
safe zones. These goals are carefully tailored to meet the
unique demands of each terrain type, ensuring both adapt-
ability and safety.

These navigation goals establish a robust foundation for or-
acle policy training.

6. Experimental Details

All experiments are conducted on a single A40 GPU,
though the policy can also be deployed on a more cost-
effective GPU, such as the 4080. The oracle policy training
requires approximately ∼ 18 GPU hours, while the unified
policy training takes ∼ 2 GPU days. For camera placement,
if the humanoid robots are equipped with a head-mounted
camera, we use the default configuration. Otherwise, an
additional camera is attached approximately at eye level.
This section provides additional implementation details of
LEGO-H: Section 6.1 details the architecture specifications,
and Section 6.2 elaborates on the training procedures and
hyperparameter configurations.

6.1. Network Architectures

This section details the network architectures of: the scan-
dot encoder, the oracle policy, and the masked Variational
Autoencoder (VAE) used in the Hierarchical Loss Metric
(HLM).
Scandot Encoder. It is three layers of MLPs, with the hid-
den layer dimension of [128, 64, 32]. The activation func-
tions are eLU for hidden layers and Tanh for the output
layer.
Oracle Policy. The Actor network takes proprioceptive
data, encoded scan features from the Scandot Encoder, priv-
ileged information, and encoded privileged features as in-
puts, and flows them into three layers of MLPs, where the
dimension is [512, 256, 128]. The activation functions are
eLU for hidden layers and Tanh for the output layer.The
Critic network shares the same architecture as the Actor net-
work. The encoder dimension for privileged information is
[64, 20].
Masked VAE for HLM. The architecture of the Variational
Autoencoder (VAE) employed for the Hierarchical Loss
Metric (HLM) consists of fully connected residual layers.
The encoder includes multiple ResidualFC layers followed
by two linear layers to produce the mean and log variance
of the latent variable. ReLU activations are used in both
the encoder and decoder, with the decoder’s output layer
utilizing a sigmoid activation function to ensure bounded
outputs.

6.2. Training Procedure

The training process begins with the development of ora-
cle policy using privileged information and expert naviga-
tion goals. Subsequently, the unified policy, incorporating
TC-ViTs and the locomotion module, is trained with visual
information as inputs. This stage excludes privileged infor-
mation and distills motor knowledge from the oracle policy
into the unified framework.



6.2.1. Oracle Policy Training

The goal of this stage is to develop an oracle locomotion
policy that facilitates the training of the unified policy in
the subsequent stage. Since the environment properties will
be unknown in the second stage, we adopt the strategy
from [3, 16] to train an adaptation module capable of es-
timating environment properties. The detailed training pro-
cedure is outlined below.

Curriculum Learning. To ensure stable training, we lever-
age curriculum learning [3, 6, 7], progressively increasing
the complexity of traversable terrains based on the robots’
acquired skills. This method enables gradual adaptation and
robust policy development for challenging trails. Specif-
ically, the robot’s distance from the origin is tracked and
compared against a threshold determined by its commanded
velocity and the episode length. Terrain levels are adjusted
as follows: (1) if the robot’s distance exceeds 80% of the
threshold, the terrain level advances to a more challeng-
ing stage; (2) if the robot’s distance falls below 40% of the
threshold, the terrain level reverts to an easier stage; and (3)
upon completing all levels, the robot is randomly reassigned
to a level to maintain diversity in training.

Domain Randomization. To increase the sim-to-real trans-
fer ability, we follow the common strategy in robotics to use
the [14]. The detailed parameters are listed in Tab 5.

Table 5. Domain randomization parameters.

Term Value
Friction U(0.6, 2.0)

Base Mass offset U(0.0, 3.0)
Base CoM offset U(−0.2, 0.2)

Push robot–interval 8s
Push robot–max push vel_xy 0.5m/s

Motor strength range U(0.8, 1.2)
Delay update global steps 24× 8000

Rewards. Please refer to Tab 6 for the detailed formula
definitions and corresponding weights.

Termination Conditions. To maintain meaningful train-
ing and testing environments, we define termination condi-
tions to prevent invalid episodes. An episode ends if any
of the following occur: (1) Soft pose check: the robot’s ab-
solute roll or pitch exceeds a predefined threshold, or its
height falls below a defined lower bound; (2) Goal reach
check: the robot is within a specific distance from the final
goal. We adopt the goal navigation criteria from [1], setting
the goal distance to roughly twice the robot’s body width.
Specifically, the goal distance is set to 0.89 during testing
and 0.5 during training to encourage precise task execution.
(3) Timeout: The robot exceeds maximum episode length.

6.2.2. Unified Policy Training
To train the unified policy, we use the rewards listed in
Tab 6, and losses introduced in the main paper, where the
hyperparameters are listed in Tab 7.

7. Humanoid Hiking Benchmark
This section provides: (1) Qualitative comparisons of robot
behaviors in response to varying trail challenges, demon-
strating how different policy learning methodologies influ-
ence navigation and locomotion strategies tailored to hu-
manoid tasks; (2) Detailed quantitative results for each trail
type between EP-H and RMA-B, offering insights into spe-
cific strengths and weaknesses of the approaches under dis-
tinct terrain and navigation conditions.
Visualization. Fig 7 presents qualitative comparisons
of LEGO-H with other benchmarked methods across five
distinct trail examples, expanding on the key findings
from Section 4.4 of the main paper. Additional insights
include:(1) without vision, RMA-B frequently fails to adapt
to changing terrain properties (e.g., slope and surface fric-
tion) and falls over more often, as observed in Fig 7(a)-(b).
It also struggles to navigate obstacles effectively, often be-
coming stuck, as shown in Fig 7(c). The higher MEV on
Ditch and Hurdle, and lower trail completion on Forest in
Tab 8 also demonstrate this. (2) EP-H, which processes
depth frames independently and applies brute-force cutoff
for distant depth information, exhibits "circling" behaviors
due to its inability to maintain scene continuity. This lim-
itation hinders quick decision-making and recovery from
self-induced distribution shifts, as demonstrated in Fig 7(b),
and results in inefficient navigation paths, as illustrated in
Fig 7(c). (3) While leveraging vision, RMA-H lacks dy-
namic adaptability in navigation due to its separation of lo-
comotion and navigation learning. This results in inefficient
behaviors on trails requiring sharp turns or obstacle avoid-
ance, as seen in Fig 7(a)-(b). Additionally, its inefficient
embodiment leads to unsafe detours, with trajectories that
closely rub against obstacles, as highlighted in the zoomed-
in trajectory in Fig 7(c). (4) The clean and safe-clearance
trajectories of LEGO-H across all examples highlight the
necessity and importance of integrative navigation and lo-
comotion development through unified learning.
Insufficient Vision vs Blind. Tab 8 show the comparison
between EP-H and RMA-B. It indicates insufficient vision
sometimes worse than blind vision.

8. Discussion
Release and maintains. All code/models/benchmarks will
be publicly accessible and continuously updated to incorpo-
rate more robots/environments/models, aiming to establish
a standard evaluation testbed for humanoid hiking research.
Future work. (1) Kilometer-scale hiking. In this paper,



Table 6. Rewards’ definition and weight.The symbol ∗ means the term only used in unified policy training stage.

Term Mathematical Expression Weight
Tracking Goal Velocity min(vtarget·vt,cmdx)

cmdx+ϵ 10.0
Tracking Yaw exp (− |ψtarget − ψt|) 0.5

Linear Velocity (Z) v2z -2.0
Angular Velocity (XY)

∑(
ω2
x + ω2

y

)
-1.0

Orientation
∑(

g2x + g2y
)

-1.0

DOF Acceleration
∑(

q̇t−1−q̇t
∆t

)2

-3.5e-8
Collision

∑
(∥Fcontact∥ > 0.1) -10.0

Action Rate ∥at−1 − at∥ -0.01
Delta Torques

∑
(τt − τt−1)

2 -1.0e-7
Torques

∑
τ2t -1.0e-5

Hip Position
∑

(qhip − qhip-default)
2 -0.5

DOF Error rdof_error =
∑

(qdof − qdefault)
2 -0.04

Feet Stumble
∨

(∥Fcontact∥>4·|Fcontact|) -1
Feet Edge (terrain_level > 3) ·

∑
(feet_at_edge) -1

Feet Air Time
∑

(Tair − 0.5) · (first_contact) 1.0(H1)/0.5(G1)
Base Height (hbase − htarget)

2 -100.0 (H1)/-35.0 (G1)

Point Navigation Distance∗ rpn_distance =

{
1 ∥prel∥ < θreach

−∥prel∥ · 0.75 otherwise
1.0

DOF Position Limits
∑

(−max (0, dof − dof_limlow) + max (0, dof − dof_limup)) 0.0 (H1)/-5.0 (G1)
Tracking Sigma exp(−track2err/σ) 0.5

LEGO-H EP-H RMA-B RMA-H LEGO-H EP-H RMA-B RMA-H
(b)(a)

LEGO-H EP-H RMA-B RMA-H
(c)

Figure 7. Qualitative comparisons between LEGO-H and other benchmarked methods. The trajectories, visualized through dynami-
cally updated colored lines, depict the robots’ torso position as they traverse diverse trail environments. (a) illustrates the performance on
a RandomMix trail featuring unobstructed views with varied terrain types. (b) highlights the results on a Ditch trail, where uneven terrain
with slopes and gaps demands quick turns and agile leaps. (c) showcases the performance on a Forest trail, where extensive obstacles of
different sizes and heights block the robot’s view. The zoom-in regions highlight the issues of the robots.

Table 7. Loss weight hyperparameters.

Parameter w1 w2 w3 w4 w5 w6 w7 w8 cmt cms

Value 1.0 1.0 1.0 1.0 1.0 1.0 100.0 2.0 0.85 0.15

we investigate humanoid robots on prototype trails to es-
tablish a baseline on the importance of integrative high-

level navigation and low-level motor skills. However, real-
world trails are considerably more complex, with long-
distance traverse challenges. Future work could expand the
framework to handle kilometer-scale trails, where sustained
adaptability, energy efficiency, and long-term planning be-
come crucial. (2) Whole-body control for integrative nav-
igation and locomotion skills. Expanding control across



Table 8. EP-H vs RMA-B on each trail category. This table employs a distinct protocol for fine-grained analysis: 256 randomly initialized
robots are evaluated for 30 seconds per trail category, spanning 25 scenes (5 difficulty levels, each with 5 variants). Results are averaged
over 5 runs to minimize random biases and ensure robustness.

Methods Success Rate (%) ↑ Trail Completion (%) ↑ Traverse Rate (%) ↑ MEV (%) ↓ TTF (s) ↑ Time-to-Reach (s) ↓

RandomMix
EP-H 16.98± 0.85 2.67± 0.14 70.88± 1.41 11.32± 1.83 3.33± 0.13 9.73± 0.19

RMA-B 30.99± 0.95 3.60± 0.37 76.74± 1.13 10.95± 1.70 4.14± 0.20 6.79± 0.09

Ditch
EP-H 16.12± 0.66 17.90± 0.62 55.75± 0.58 22.75±1.63 3.50± 0.08 11.88± 0.33

RMA-B 32.80± 1.56 30.77± 0.59 63.49± 1.42 23.66± 1.63 4.56± 0.18 6.37± 0.37

Hurdle
EP-H 46.54± 2.64 57.04± 1.25 68.95± 1.79 8.77± 0.46 6.44± 0.21 5.94± 0.14

RMA-B 83.04± 0.27 76.72± 0.47 83.04±1.17 12.90± 1.92 9.24± 0.28 4.22± 0.04

Gap
EP-H 18.13± 1.19 32.26± 0.48 58.74± 1.21 31.84± 2.00 4.36± 0.20 12.15± 0.34

RMA-B 39.93± 1.55 44.27± 1.06 65.30± 1.32 24.10±2.09 5.44± 0.24 7.99± 0.17

Forest
EP-H 63.29± 1.50 1.04± 0.16 82.61± 1.18 6.18± 1.57 8.96± 0.49 13.65± 0.08

RMA-B 64.81± 2.43 1.86± 0.38 81.59± 3.20 5.69± 1.04 10.18± 0.89 13.20± 0.24

Rear-arm Tuck Athletic Twisting Stride

Include the Use of Arms vs Lower Body

w Arms

Lower Body

Figure 8. Preliminary observations for future work on WBC.
G1 exhibits distinct motor behaviors over w arms vs only lower
body. Besides, G1 emerges a rear-arm tuck posture while walking,
likely to minimize arm interference with vision (see depth map).

the entire body would enable a wider spectrum and adap-
tive behaviors, enhancing the robot’s flexibility in complex,
obstacle-rich environments. Our preliminary results sug-
gest that while robots exhibit distinct motor styles based on
physical constraints(Fig. 8), direct involvement of the upper
body does not significantly impact performance. This opens
opportunities for future work on exploring how coordinated
whole-body strategies can enhance performance. (3) Sim-
ulated environment upgrading. Our current simulated trails
are primarily for foot contact; Future work could upgrade

the simulated environment to better incorporate whole-body
interactions, enabling a better testbed for future hiking stud-
ies. (4) Real-world deployment. In this paper, we conduct
experiments on the simulator, enabling controlled bench-
marking, rapid iteration, and reproducibility — key pre-
requisites for real-world deployment. However, applying
LEGO-H to real-world scenarios remains a vital next step
toward closing the sim-to-real gap and realizing field-ready
humanoid hikers.
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