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Supplementary Material

1. Visualization of Cross-Attention Modules
Fig. 1 illustrates the architectures of different Internal Mod-
ular Fusion used in our experiments. The ”Gated Xatten”
module, adapted from [1], is introduced as a new compo-
nent in these architectures. Based on where the ”Gated Xat-
ten” module is inserted, we identify three distinct architec-
tures: pre-cross, post-cross, and parallel. These architec-
tures are further compared in terms of their efficiency in
fusing multi-layer visual features, as detailed in Tab. 2 in
the main paper.
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Figure 1. Architecture Comparisons between three Current Inter-
nal Modular Fusion Strategies.

2. Training Datasets and Evaluation Bench-
marks

2.1. Training Datasets

For the training data, we utilize three main datasets:
1. The first dataset is used for pretraining. This dataset

comprises a subset of 558K LAION-CC-SBU [22, 23,
26] image-text pairs with BLIP-generated captions [11],
which is the same as the first stage of the LLaVA-1.5
[13] pre-training.

2. The second and third datasets are used for instruction
tuning. The second dataset, which is the primary fine-
tuning dataset used in most of our experiments, con-
sists of a 665K instruction-following data summarized
by LLaVA-1.5. The third part, derived from Cambrian-1
[29], builds upon the 665K instruction-following dataset
of LLaVA-1.5 by adding a small number of OCR and
chart data. The detailed composition of these datasets
can be found in Tab. 1.

2.2. Evaluation Benchmarks

To conduct a comprehensive evaluation of MLLMs across
different configurations, we have prepared seven distinct
benchmarks, categorized into four types: General, OCR,

Table 1. The mixture detail of fine-tuning dataset for LLaVA-1.5
665K and Cambrian-1 737K.

Data Size

LLaVA [14] 158K
+ ShareGPT [25] 40K
+ VQAv2 [5] 83K
+ GQA [6] 72K
+ OKVQA [19] 9K
+ OCRVQA [21] 80K
+ A-OKVQA [24] 66K
+ TextCaps [27] 22K
+ RefCOCO [8, 18] 48K
+ VG [10] 86K
LLaVA-1.5 Total 665K

+ AI2D [9] 16K
+ DocVQA [20] 15K
+ DVQA [7] 13K

Cambrian-1 Total 737K

CV-Centric, and Hallucination. The capabilities evaluated
by each category are as follows:
• General: Evaluates the general capabilities of mul-

timodal models, including cognition and perception.
Benchmarks in this category include: GQA [6], MM-
Bench (MMB) [16], and MME [4], which is further di-
vided into MME Cognition (MMEC) and MME Percep-
tion (MMEP ).

• OCR: Evaluates the model’s performance in text recog-
nition and understanding tasks. Benchmarks in this cate-
gory include: TextVQA [28] and OCRBench [15].

• CV-Centric: This category focuses on better evaluat-
ing visual representations in an integrated multimodal
setting. Benchmarks in this category include: CV-
Bench [29], which is further divided into CV-Bench2D

and CV-Bench3D.
• Hallucination: Evaluates the model’s ability to gener-

ate accurate and truthful information, avoiding hallucina-
tions. The benchmark in this category is: POPE [12].

3. More Detail about Results
In Section 5, we present the performance differences of var-
ious fusion strategies under the Triple layer selection set
when dealing with different data scales and model compo-
nents, as shown in Fig. 5 and Fig. 6 in the main paper.
To provide a more comprehensive understanding of the per-
formance differences, we include the complete evaluation
results in Tab. 2 and Tab. 3.



Table 2. Comparison on Different Training Datasets. Note: E, I, D, and M represent External Fusion, Internal Fusion, Direct Fusion, and
Modular Fusion, respectively.

FT PT+IT General OCR CV-Centric Hallu Avg.
GQA MMB MMEC MMEP TextVQA OCRBench CVBench2D CVBench3D POPE

E + D
558k + 332k 56.04 49.14 224 1126 34.56 266 43.96 50.00 85.91 47.83
558k + 665k 59.19 53.78 238 1141 38.35 256 42.05 50.50 86.33 49.18
558k + 737k 59.73 52.84 208 1202 39.21 285 41.53 50.58 86.71 49.47

E + M
558k + 332k 54.90 50.77 243 1055 34.16 250 45.53 51.58 86.01 47.90
558k + 665k 58.43 52.66 225 1173 36.25 262 45.78 52.83 86.03 49.44
558k + 737k 58.82 51.11 241 1211 37.19 280 44.11 51.92 86.78 49.85

I + D
558k + 332k 55.06 52.14 238 1046 33.74 219 48.77 55.83 86.04 48.39
558k + 665k 58.59 47.47 223 1207 36.24 255 41.87 53.08 85.87 48.54
558k + 737k 58.09 49.66 244 1188 37.05 272 43.52 50.50 86.13 49.56

I + M
558k + 332k 52.26 43.56 234 1027 31.12 236 43.01 48.08 84.96 45.24
558k + 665k 57.56 49.66 212 1163 34.06 255 38.66 47.42 84.69 46.91
558k + 737k 58.09 51.11 241 1172 35.08 272 46.96 47.75 86.09 49.00

Table 3. Comparison on Different MLLM Components.

FT Component General OCR CV-Centric Hallu Avg.
GQA MMB MMEC MMEP TextVQA OCRBench CVBench2D CVBench3D POPE

E + D
Baseline 59.19 53.78 238 1141 38.35 256 42.05 50.50 86.33 49.18
+SigLIP 60.69 53.26 219 1245 45.98 302 41.31 57.92 86.84 51.76
+MobileLLaMA 2.7B 61.39 59.28 238 1293 42.54 280 45.50 55.17 87.41 52.63

I + D
Baseline 58.59 47.47 223 1207 36.24 255 41.87 53.08 85.87 48.54
+SigLIP 59.32 54.73 230 1162 41.66 272 42.91 55.33 86.02 50.45
+MobileLLaMA 2.7B 60.56 58.33 235 1283 39.94 266 39.06 54.42 86.62 51.01

I + M
Baseline 57.56 49.66 212 1163 34.06 255 38.66 47.42 84.69 46.91
+SigLIP 50.82 45.45 262 1029 16.43 134 44.94 52.67 81.52 43.27
+MobileLLaMA 2.7B 58.10 50.77 246 1233 33.09 246 46.72 50.00 86.22 49.10

We further explored different layer combinations and ex-
perimented with a larger language model (Vicuna 1.5 7B
[3]). As shown in Tab. 4, fusing visual layer {3} alone
yields lower performance than fusing visual layer {18}, in-
dicating that the earlier layer (layer 3) has a lesser impact.
Comparing the two fusion methods, external direct fusion
shows greater performance gains (average score: 49.18 →
52.63 → 58.62) than internal direct fusion (average score:
48.54 → 51.01 → 54.37). Coupled with the weaker results
on smaller datasets (see Fig. 5 in the main paper), this
phenomenon suggests that internal fusion may disrupt in-
trinsic feature distributions within LLM. However, by more
closely integrating ViT’s object-focused features with the
LLM’s higher-level abstractions, internal fusion holds sub-
stantial theoretical promise. As illustrated in Fig. 2, the
training loss for internal fusion gradually converges but con-
tinues to improve, implying that, with sufficient data, this
approach has the possibility of outperforming simpler ex-
ternal fusion strategies.
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Figure 2. Loss curves for different fusion strategies.

Table 4. Comparison of performance across different configura-
tions.

Model Avg. General OCR CV-Centric Hallu
Mini-LLaVA 48.51 49.15 29.69 47.37 85.83
E+D {3} 48.26 49.24 29.53 46.17 86.01
E+D {3,18,23} Vicuna 1.5 7B 58.62 59.57 39.84 61.39 86.84
I+D {3,18,23} Vicuna 1.5 7B 54.37 57.85 30.93 55.84 84.40



4. Limitations
In this study, we examine model scaling by parameter and
dataset size. Specifically, for LLMs, our experiments are
limited to a maximum scale of 7B parameters. Similarly, for
datasets, we constrain the scale to about 1M samples. While
these limits are smaller compared to the largest LLMs and
datasets available in the field, our exploration still holds sig-
nificant value due to the practical relevance and commonal-
ity of such scales in many works [2, 17, 30].
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