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Non-Natural Image Understanding with Advancing
Frequency-based Vision Encoders
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1. Additional Examples016

In Figure 1 and Figure 2, we present additional qualitative017
examples illustrating the performance of our model on both018
captioning and question-answering tasks. These figures un-019
derscore the versatility of our model across multiple types020
of non-natural image understanding tasks.021

2. Evaluation Details022

Traditional metrics for evaluating the quality of descrip-023
tions, such as BLEU [17] and CIDEr [20], are limited by024
their reliance on the linguistic style of the reference descrip-025
tions. For instance, even for the GPT-4V, if not fine-tuned026
on a corresponding training set, may generate descriptions027
that are correct but receive low scores. Conversely, a model028
fine-tuned on a training set with a similar linguistic style029
can easily achieve high scores. To overcome this limitation,030
we are inspired by [14], and we consider using GPT-4 to031
evaluate the correctness and level of detail in the generated032
descriptions. The prompts used for geometric caption eval-033
uation are shown in Figure 3 and Figure 4(similar prompts034
for chart and function), which allows for a more objective035
assessment of the results produced by different models.036

Table 1. Statistics of Caption Training Data.

Category Statistic Number
Total - Total number 190K

- Average length (words) 61.91
- Average length (characters) 350.67
- Vocabulary size 21127

Geometry - Total number 60K
- Average length (words) 44.23
- Average length (characters) 230.28
- Vocabulary size 2410

Chart - Total number 30K
- Average length (words) 109.40
- Average length (characters) 726.73
- Vocabulary size 20598

Function - Total number 100K
- Average length (words) 58.49
- Average length (characters) 321.11
- Vocabulary size 145

3. Training Data 037

In Tables 1 and Tables 2, we present the training data used 038
for alignment and instruction fine-tuning across three types 039
of non-natural images: geometry, charts, and functions. 040
The geometry data is sourced from Geo170K [4], the func- 041
tion data from Mavis-caption [22], and the chart data from 042
Chartllama [6]. Notably, for the chart data, we extended the 043
textual responses to provide more detailed analyses of the 044
visual modality’s impact on the results, rather than directly 045
answering with a single number or word. All of our training 046
data will be publicly available. 047

4. Baselines for the Caption task 048

To evaluate the performance of our model, we compare it 049
against both closed-source and open-source multimodal 050
large language models (MLLMs). The baselines are di- 051
vided into two categories: 052

4.1. Closed-Source MLLMs 053

These closed-Source models represent the state-of-the-art 054
in multimodal understanding and captioning tasks. They 055
include: Qwen-VL-Plus [2], Gemini-1.0-Pro [19], Qwen- 056
VL-Max [2], and GPT-4V [16]. These models serve as the 057
performance upper bound, given their advanced design and 058
access to extensive training resources. 059
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Figure 1. More presentation of caption tasks.

Table 2. Statistics of Instruction Training Data.

Category Statistic Number
Total - Number of unique questions 247K

- Average question length 44.35
- Average answer length 61.62

Geometry - Number of unique questions 117K
- Average question length 69.88
- Average answer length 70.19

Chart - Number of unique questions 100K
- Average question length 12.51
- Average answer length 60.51

Function - Number of unique questions 30K
- Average question length 50.82
- Average answer length 31.45

4.2. Open-Source MLLMs060

These models are publicly available, making them more ac-061
cessible for research and development. All three data types062
include LLaVA [13] and its variants (LLaVA-adapter [5],063
LLaVA-next [8]), known for their adaptability to multi-064
modal inputs, with visual encoders fine-tuned on open065
datasets. For these models, we directly use their pre-trained066
weights. In addition, we introduce 3 baselines for each data067
type, including:068

Geo-Caption: For geometric image caption we selected069
3 state-of-the-art baselines respectively: G-LLaVA [4],070
MAVIS [22], and EAGLE [9].071

Function Caption: For function image caption, to the072
best of our knowledge, only MAVIS has attempted, so we073
use the function image caption dataset provided by MAVIS074
and train according to G-llava and EAGLE as the corre-075

sponding baseline model. 076

• G-LLaVA: First train the projection linear layer and then 077
both the projection linear layer and the language model 078
are trainable. 079

• MAVIS: First Train the visual encoder and then freeze 080
the CLIP-Math in both the alignment phase and instruc- 081
tion fine-tuning phase, and train the projection layer along 082
with the LoRA-based LLM. 083

• EAGLE: First train the visual encoder and projection 084
layer and then use Lora to fine-tune the visual encoder 085
and train the projection layer and LLM with full parame- 086
ters 087

Chart Caption: For the chart image caption, we com- 088
pare 2 chart understanding models, ChartLlama [6] and 089
Unichart [15]. We additionally use the same chart dataset 090
to fine-tune MAVIS, G-LLAVA, and EAGLE. The complete 091
experimental results are shown in the Table 3. 092

5. Baselines for the Q&A task 093

5.1. For GeoQA 094

In our experimental setup, we compare our method against 095
three categories of baselines: heuristics-based baselines, 096
conventional models, and multi-modal large language mod- 097
els (MLLMs). The heuristics-based baselines include Ran- 098
dom Chance and Frequent, which provide simple reference 099
points for evaluating performance. Conventional models 100
such as Geoformer [3] and UniMath [10] represent tra- 101
ditional task-specific solutions designed for mathematical 102
and geometric reasoning. The MLLMs include state-of- 103
the-art open-source models like LLAVA-1.5 [13] (7B and 104
13B), Math-LLAVA [18], G-LLAVA [4] (7B and 13B), 105
MAVIS [22], and EAGLE [9], which are based on ad- 106
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Figure 2. More presentation of question-answer tasks.

Table 3. The complete experimental results of Chart Caption

Model Correctness Detail
Closed-source MLLMs
Qwen-VL-Plus [2] 1.75 2.15
Gemini-1.0-Pro [19] 2.00 2.20
Qwen-VL-Max [2] 2.35 2.30
GPT-4V [16] 1.88 2.33
Open-source MLLMs
LLAVA [13] 2.05 2.45
LLAMA-Adapter [5] 2.19 2.65
LLAVA-NeXT [8] 2.26 2.72
G-LLAVA [4] 2.25 2.79
MAVIS [22] 2.31 2.78
EAGLE [9] 2.33 2.75
Ours 2.35 2.84

vanced architectures such as Vicuna and LLAMA-2. These107
baselines ensure a comprehensive evaluation of our method108
against a range of existing approaches.109

5.2. For FunctionQA110

In our experimental setup, we compare EDGE against three111
categories of baselines: heuristics-based baselines, closed-112
source MLLMs, and open-source MLLMs. The heuristics-113
based baseline includes Random Chance, which serves as114
a simple reference point. The closed-source MLLMs in-115
clude advanced proprietary models such as CoT GPT-4 [1],116
PoT GPT-4 [1], Multimodal Bard [19], and GPT-4V [16],117
which represent the state-of-the-art in multimodal reason-118
ing tasks. The open-source MLLMs consist of models119
like LLAVA [21], LLAMA-Adapter [5], LLAVA-NeXT [8],120
SPHINX-MoE [11], and MAVIS [22], which leverage ac-121
cessible architectures such as Vicuna-1.5 and MAmmoTH-122
2-7B for multimodal tasks. These baselines provide a com-123

Table 4. Ablation experiments of the visual encoder with different
adjustment strategies in stage 3.

Vision Encoder in Stage 3 Full Fine-tune Freeze LoRA
Performance on GeoQA 65.7 67.3 68.2

prehensive comparison, highlighting the effectiveness of 124
our model, which achieves competitive performance against 125
both open-source and closed-source approaches. 126

5.3. For ChartQA 127

In our experiments on the ChartQA benchmark, we com- 128
pare our method against both conventional models and 129
multi-modal large language models (MLLMs). The conven- 130
tional models include Pix2struct [7], Matcha [12], Chart- 131
T5 [23], and Unichart [15], which are specialized meth- 132
ods designed for processing and reasoning with chart 133
data. The multi-modal large language models consist of 134
SPHINX [11], Qwen [2], and Chartllama [6]. 135

6. Ablation of Vision Encoder in Stage 3 136

The visual encoder is fully fine-tuned in stages 1 and 2. In 137
stage 3, visual encoder is frozen and LoRA is used for fur- 138
ther adjustments. This approach is based on the fact that, as 139
the LLM backbone is fine-tuned on the QA dataset and ac- 140
quires knowledge from step-by-step rationales, the LoRA- 141
based visual encoder progressively shifts focus toward key 142
geometric cues critical to the resolution process, rather than 143
the entire image. This synergy enhances a deeper under- 144
standing of geometric features. We include an ablation 145
study of the adjustment strategy, as shown in the Table 146
above, which confirms that LoRA tuning yields the best per- 147
formance. The projection layer is fine-tuned in stages 2 and 148
3, while the LLM is adjusted only in stage 3. 149
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Figure 3. Evaluation of the correctness of the geometry.

Figure 4. Evaluation of geometric details.
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7. Limitation and Future Work150

Despite the significant progress achieved by FM-ViT and151
the edge model in understanding non-natural images, there152
are still some limitations that warrant further investigation.153
First, while the frequency modulation technique enhances154
the ability to capture high-frequency information, it remains155
insufficient in extracting fine-grained details, such as subtle156
protrusions on a line or isolated points. Second, this study157
primarily focuses on improving the visual encoding capabil-158
ities for non-natural images, without delving into the impact159
of larger and more diverse datasets, leaving this aspect for160
future exploration.161

In future work, we plan to further enhance the model’s162
ability to extract fine-grained information from non-natural163
images. Additionally, we aim to generate synthetic datasets164
with greater diversity and realism through advanced data165
augmentation methods to further improve the model’s un-166
derstanding and generalization capabilities for broader ap-167
plications, such as education, accessibility tools, and data-168
driven policymaking.169
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