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Supplementary Material

Algorithm 1: P2R in fully-supervised training
Hyperparameter: µ, τ , and λ
/* Score map predicted by model: */

Input: P “ tp P Rn,x P Rnˆ2u

/* The coordinates of ground truth points: */

Input: x1 P Rmˆ2

Output: loss value Ll.
/* Compute the l2 distance matrix L2 */

1 L2 P Rnˆm : L2ri, js Ð }xris ´ x1
rjs}2

/* Obtain the minimum d and the corresponding

column index k of each row in L2 */

2 Initialize d P Rn and k P Nn

3 for i Ð 1 to n do
4 dris Ð minj L2ri, js

5 kris Ð argminj L2ri, js

/* Compute the P2R matching matrix M in (18) */

6 Mf Ð 0nˆm, β Ð 0n

7 for i Ð 1 to n do
8 Mf ri, kriss

Ð 1, βris Ð pdris ă µq

9 M Ð Mf d pβJ1mq

/* Compute the cost C in (21) for foreground pixel

selection, in which the subsection in (21) can

be implemented by element-wise division */

10 C P Rnˆm: Cri, js Ð τL2ri, js ` log
´

1
pris

´ 1
¯

11 C Ð C c M
/* Estimate the learning objective p̂ by marking

the minimum in each column of C using M̂ */

12 M̂ Ð 0nˆm for j Ð 1 to m do
13 k Ð argmini Cri, js

14 M̂rk, js Ð 1

15 p̂ Ð M̂J1m

/* compute the weighted binary cross entropy */

16 Ll Ð ´λp̂J log p ´ p1n ´ p̂qJ logp1n ´ pq

17 return Ll

In this supplemental material, we present the following
contents:

• Sec. 8: Pseudo-code of P2R for training.
• Sec. 9: Implementation details of P2R.
• Sec. 10: Ablation study on Sp¨q vs. Ip¨q in (4).
• Sec. 11: Proof of the unlabeled loss (9).
• Sec. 12: Comparison of P2R with state-of-the-art loss

functions in fully-supervised crowd counting.
• Sec. 13: Visualization of P2R predictions on UCF-

QNRF dataset images.

Algorithm 2: P2R in semi-supervised training
Hyperparameter: µ, τ , η, and λ
/* prediction of student: */

Input: Ps “ tp P Rn,x P Rnˆ2u

/* pseudo-labels generated by teacher: */

Input: P 1
t “ tp1

t P Rm,x1
t P Rmˆ2u

Output: loss value Lu.
/* Compute the l2 distance matrix L2 */

1 L2 P Rnˆm : L2ri, js Ð }xsris ´ x1
trjs}2

/* Obtain the minimum d and the corresponding

column index k of each row in L2 */

2 Initialize d P Rn and k P Nn

3 for i Ð 1 to n do
4 dris Ð minj L2ri, js

5 kris Ð argminj L2ri, js

/* Compute the P2R matching matrix Mst */

6 Mf Ð 0nˆm, β Ð 0n

7 for i Ð 1 to n do
8 Mf ri, kriss

Ð 1, βris Ð pdris ă µq

9 Mst Ð Mf d pβJ1mq

/* Compute the cost C in (21) for foreground pixel

selection, in which the subsection in (21) can

be implemented by element-wise division */

10 C P Rnˆm: Cri, js Ð τL2ri, js ` log
´

1
pris

´ 1
¯

11 C Ð C c Mst

/* Estimate the learning objective p̂ by marking

the minimum in each column of C using M̂ */

12 M̂ Ð 0nˆm for j Ð 1 to m do
13 k Ð argmini Cri, js

14 M̂rk, js Ð 1

15 p̂ Ð M̂J1m

/* Compute the confidence diagonal matrix Z */

16 ξ P t0, 1um : ξris Ð p1
tris ą η

17 Z Ð 0nˆn

18 for i Ð 1 to n do
19 Zri, is Ð Mst

J
ri, :sξ ` p1 ´ βrisq

/* compute the weighted binary cross entropy */

20 Lu Ð ´λp̂JZ log p ´ p1n ´ p̂qJZ logp1n ´ pq

21 return Lu

8. Pseudo Code of P2R

In Algo. 1 and Algo. 2, we present the pseudo-code to com-
pute the loss for data with ground truth (GT) labels and
pseudo-labels, respectively. In Algo. 2, the parts that dif-



Method Identity Inv-Sigmoid
MAE MSE MAE MSE

P2P [57] 52.74 85.60 52.50 82.94
P2R (ours) 53.30 83.01 51.02 79.68

Table 3. Ablation study on Sp¨q.

fer from those in Algo. 1 are highlighted in purple. The
comparison between these two algorithms shows that most
of the steps are the same, except for the involvement of con-
fidence computation in Algo. 2.

Also note that the computation of P2R is efficient since
the loops in Algorithm 1 and Algorithm 2 can be written as
matrix operations, which can be executed in parallel on a
GPU.

9. Implementation Details
Data pre-processing. Images in the datasets are cropped
into 256 ˆ 256 for training. For labeled images, we apply
horizontal flips to each cropped sample with a probability of
0.5 and randomly resize the images with a scale factor be-
tween 0.7 and 1.3. For unlabeled data, the set of weak data
augmentation operations is the same as those for labeled
data, while strong data augmentation includes adjustments
of brightness, contrast, saturation, and hue, conversion from
color images to grayscale images, the addition of Gaussian
blur with different kernel sizes, and cutout. Besides, Cutout
is also implemented, as displayed in Fig. 1.

Training process. In all experiments, we train the model
for 1500 epochs with a batch size of 16. Only labeled data
are used in the first 100 epochs for initialization. After that,
α in (17) is gradually increased from 0 to 1 with a step of
0.01. Adam [? ] serves as the optimizer, with a learning
rate of 5 ˆ 10´5 for the decoder D and 1 ˆ 10´5 for the
backbone F . Furthermore, the loss in the cut-out patch is
directly set to 0 to avoid unreasonable optimization.

10. Ablation Study on Cost Function
In (4), we use the inverse sigmoid function,

Sppq “ ´ log

ˆ

1

p
´ 1

˙

, (24)

rather than the identity operator used in vanilla P2PNet [57]
for better performance. We present the empirical results
in Table 3 to demonstrate its advantage. It shows that the
inverse sigmoid function performs better than the identity
operator on both P2P [57] and P2R.

11. The Proof of Ill-Posed Unlabeled Loss
Under the P2P framework, we demonstrate that the loss
function for unlabeled data, formulated as (8), is ill-posed,

Loss Point-based ShTech B QNRF FPSfunction counting model MAE MSE MAE MSE
L2 [73] ✗ 7.6 13.0 102.0 171.4 1503.8
BL [38] ✗ 7.7 12.7 88.7 154.8 274.22
GL [61] ✗ 7.3 11.7 84.3 147.5 26.18

DMC [63] ✗ 7.4 11.8 85.6 148.3 25.49
P2P [57] ✓ 6.3 9.9 85.3 154.5 2.32

P2R (ours) ✓ 6.2 9.8 83.3 138.1 156.25

Table 4. Comparison of counting losses (100% Label Pct.)

since the second term for the background part is set to 0, as
shown in (9). This is easy to follow because

Zp̂t “ diagpMstζqpMst1nq (25)
“ pMstζq d pMst1nq “ Mstζ. (26)

Equation in (26) holds since each row of Mst is an all-zero
or one-hot vector since it is matrix result of bipartite-graphs
matching between prediction and GT. Taking any row of
Mst and denoting it as m P Rm, we have:

mJζ “

#

1, if Dj : mrjs “ ζrjs “ 1

0, otherwise
, (27)

mJ1m “

#

1, if Dj : mrjs “ 1

0, otherwise
, (28)

which can be combined to result in:

pmJζqpmJ1mq “

#

1, if Dj : mrjs “ ζrjs “ 1

0, otherwise
. (29)

Note that (27) and (29) have the same formulation, thus the
following equation holds:

pmJζqpmJ1mq “ mJζ (30)
ñ pMstζq d pMst1nq “ Mstζ. (31)

Due to the equality of (25) and (26), the following relation-
ship can be derived:

Zp̂t “ Mstζ “ diagpMstζq1n “ Z1n, (32)

which shows that the second term in (8) is 0:

Zp1n ´ p̂tq “ 0n (33)

ñ p1n ´ p̂tq
JZ logp1n ´ psq “ 0. (34)

12. Comparison with Other Losses
A theoretical overview about current counting losses is
briefly introduced in the first part of Sec. 2: Related Works.
Tab. 4 presents the empirical comparison, and P2R achieves
better performance. Besides, the main paper provides a
brief comparison between P2R and P2P in the 2nd para-
graph of Sec. 6.1, given that both are designed for point-
based counting models.
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Figure 8. Computation of Lu in P2R.

(a) Input image (b) The 200th epoch (c) The last epoch

Figure 9. More visualization of the pseudo-labels.

13. Visualization

13.1. Pseudo-Labels

In Fig. 8, we illustrate the pipeline of loss computation for
P2R. Given the teacher’s prediction Pt, the tensors P 1

t and ζ
are generated by filtering out pixels with values greater than
0.5 and η, respectively. Subsequently, the region-to-point
matching matrix Mst is constructed via (18), incorporat-
ing the results from the foreground assignment process (19)
and the background definition (20). Consequently, the cost
value to determine the learning objective within each region
is estimated through (21). The learning objective p̂ “ M̂1
is then defined, where M̂ identifies the potential foreground
pixels in each region by (22). Finally, substituting ps, p̂t,

and the trustable region indicator Z obtained via (23) into
the BCE loss (8) yields the final loss value for the P2R loss
value in our semi-supervised crowd counting.

In the main paper, we visualize pseudo-labels in
Figs. 4(e) and 4(f). In Fig. 9, we present two more exam-
ples to show the evolution of trusted regions from the 200th

epoch to the end of training.

13.2. Comparison to GT

In Fig. 10, we present some visualization results of P2R
when trained with 40% labeled data of the UCF-QNRF
dataset. P2R can recognize the semantic information and
localize pedestrians in the given images effectively.
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Figure 10. Visualization of P2R’s Prediction (# 1).
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Figure 11. Visualization of P2R’s Prediction (#2)


