
A. Datasets details
A.1. Instruction-Tuning data

Website. We develop a parser using PyAutoGUI [5] and
source websites from 22 representative scenarios such as
Airbnb, Booking, AMD, and Apple, which covering shop-
ping, technology, etc. For each scenario, we collect multiple
screenshots to maximize annotation coverage. This process
yields 22K screenshots with a total of 926K element anno-
tations. After filtering out elements classified as static
text, we retain 576K elements, averaging 26 elements per
screenshot.
Mobile. We source mobile data from AMEX [1] annota-
tions: (i) Element grounding and (ii) Functionalities. which
covers 97K screenshots, with 885K elements and 178K
functionalities.
Desktop. We collect 100 screenshots and 2,000 raw an-
notations from the OmniAct [4] Desktop training split, en-
compassing 15 software applications across iOS, Windows,
and Linux desktops. Additionally, we augment these anno-
tations using GPT-4o-assisted prompting, as detailed in the
following section.

A.2. Downstream tasks

Mind2Web [3] supports the development of generalist web
agents capable of completing complex tasks on any website
by following language instructions. The dataset aligns each
HTML document with its corresponding webpage screen-
shot, featuring a training set of 7,775 actions and three test
splits—test-task, test-website, and test-domain—verified
for correct rendering and element visibility to ensure re-
liable evaluation across tasks, websites, and domains. It
action space includes three actions: CLICK, TYPE and
SELECT.
AITW [6] is an Android smartphone environment, which
contains 30k instructions and 715K trajectories. We fol-
low the setting by SeeClick [2], which divide the data
by domains: General, Install, Google Apps, Single, Web
Shopping. It action space includes 12 actions: CLICK,
TYPE, SELECT, SCROLL UP, SCROLL DOWN, SCROLL
LEFT, SCROLL RIGHT, PRESS BACK, PRESS HOME,
PRESS ENTER, STATUS TASK COMPLETE, STATUS
TASK IMPOSSIBLE.
MiniWob [7] comprises 2000 open-ended tasks from 137
real web environments, each with high-level instruction and
action trajectory. It action space includes 2 actions: CLICK,
TYPE.

B. Settings
B.1. Evaluation metrics

We follow the original SeeClick [2] settings for evalua-
tion metrics: (i) ScreenSpot: Accuracy; (ii) Mind2Web: El-

ement accuracy, Operation F1-score, and Step success rate;
(iii) AITW: Action matching scores; (iv) MiniWob: Success
rate.

B.2. Training details

We utilize 32 V100 GPUs for instruction-tuning, while
downstream adaptation is conducted on 8 V100 GPUs. The
batch size per GPU is set to 1, with gradient accumulation
steps of 2. We use float16 precision for training. To enhance
efficiency, we apply LoRA tuning with a rank of 64 and an
alpha value of 128 for both the language model and visual
encoder, resulting in 4% of the total learnable parameters.
We leverage DeepSpeed Zero-2 and use the SDPA attention
mechanism. The learning rate is configured to 1e-4. The
maximum visual patch number is 1280. The instruction-
tuning training duration is approximately two days.
UI Connected Graph: We apply the UI-Graph to both
the visual encoder and language model with a masking ra-
tio of 0.75, using cross-layer insertion at layer 14. During
each iteration, a random ratio of visual tokens is masked.
For inference usage, we uniformly sample tokens across
each component, ensuring visibility of all components to
the model.
Interleaved Streaming: In our streaming setting, we set up
the history number as 2.
Data Resampling: To achieve data balance among ex-
isting datasets, probabilities are assigned to each dataset,
with weights set as (Web:Mobile:Desktop: GUIAct-
Web:GUIAct-Mobile) = (1:1:1: 1:1).

B.3. More Dicussions

Challenges of Long-horizon task Our UI-graph is crucial
for long-horizon tasks significantly (e.g., 20+ steps) to help
reduce the total visual tokens (e.g., 400+ tokens per frame).
Instead of storing all screenshots, one potential solution is
streaming with truncated history or decomposing complex
tasks into subtasks.

Replacing screenshots with visual captions. We explored
these ablation studies in AITZ [8], which provides visual
captions. As shown in the table, captions do not improve
the final action scores compared to using action-solely or
with screenshot inputs. This is due to: (i) Captions of-
ten overlook small but critical elements like buttons, and
(ii) Controlling the captioning accuracy is hard due to
model’s hallucinations. Therefore, screenshots prove to
be a more universal and effective form of history.

Models History (length=2) Match scores
Qwen2-VL-2B Actions 59.4
Qwen2-VL-2B Screen’s captions+Actions 58.4
Qwen2-VL-2B Screenshots+Actions 61.7

Relations between ShowUI and backbone model. We se-
lected Qwen2-VL-2B as the backbone for ShowUI based on

1

four key considerations: (i) high-resolution with enhanced
OCR capabilities, (ii) a lightweight design, (iii) interleaved
visual inputs, and (iv) long-context support.

We also considered Phi-3.5-V for ablation studies.
As shown below, the Screenshot task is consistent with
TextVQA, indicating that a superior backbone model leads
to improved performance, achieving efficient adaptation to
GUI Agents.

Models Model size TextVQA (General) ScreenSpot (GUI)
Phi-3.5-V 4.2B 72.0 71.4
Qwen2-VL 2B 79.7 75.1

B.4. Prompt templates

GPT-4o Assisted Prompts. Below, we display the prompt
used for GPT-4o to augment the OmniAct original annota-
tions, which mainly includes three types: (i) Appearance;
(ii) Spatial-relationship; (iii) Situational.

You will receive a screenshot with a red bounding box surrounding
the target element, along with the target element’s name. Analyze the
screenshot and provide concise descriptive responses for each of the
following dimensions.

1.Appearance: Describe the target element’s color, shape, ocr
and other visual characteristics.
- Example: “A rectangular chat card with a blue background to ‘Ash’.”
2.Spatial: Describe the target element’s position based on the contex-
tual spatial relationship.
- Example: “The element that positioned above the Clara.”
3.Situational: Create an intent-oriented query related to the target
element, considering how a user might interact with it.
- Example: “Send a message to Ash.”

Please follow these guidelines:
- Do not confuse the red bounding box with the element itself.
- Provide responses as concise sentences (15 words or fewer).
- For each types, make the description specific enough to distinguish it
from other elements.
- If a dimension does not apply, respond with ”None.”
- Structure your response in JSON format as shown below:

{
"appearance": "A rectangular chat card with a
blue background with letter ’A’",
"spatial": "The element that positioned above
the Clara.",
"situational": "Send a message to Ash."
}

Grounding Prompts. For grounding, we apply
below prompt, which will be added in revision:

Based on the screenshot of the page, I give a text description and you
give its corresponding location. The coordinate represents a clickable
location [x, y] for an element, which is a relative coordinate on the
screenshot, scaled from 0 to 1. {QUERY}

Action README Template. Below, we present the tem-
plate for action navigation. Variables, marked in Blue, de-
pend on specific scenarios, while actions used for loss cal-
culation are highlighted in Red.

You are an assistant trained to navigate the {device} . Given a
task instruction, a screen observation, and an action history sequence,
output the next action and wait for the next observation.

Here is the action space:
templated by action type with action description.
1. ‘CLICK’: Click on an element, value is the element to click and the
position [x,y] is required.
2. ‘TYPE’: Type a string into an element, value is the string to type and
the position [x,y] is not applicable.
...

Format the action as a dictionary with the following keys:
{‘action’:‘action type’, ‘value’:‘element’, ‘position’:[x,y]}
Position represents the relative coordinates on the screenshot and
should be scaled to a range of 0-1.

Task: {task}
<past image 1>{past action 1}
...
<past image n>{past action n}
<image n+1>{action n+1}

B.5. Qualitative Examples

In Fig.1 and 2, we display several examples on
Screenspot zero-shot grounding. We found that: with in-
struction tuning, ShowUI is able to perform some visual
reasoning, such as it can distinguishes the correct operator
among multiple abstract symbols or associate ‘view help’
with question mark, as shown in Fig.1 (b,e). Beside, we
found in several failure cases, such as Fig.1 (d,f), there
might have multiple possible clickable elements, leading to
model confusion.

In Fig.4, we demonstrate more examples about how we
leverage GPT4o to augment the original OmniAct-Desktop
annotations with diverse queries based on Appearance, Spa-
tial Relationships, and Intention.

References
[1] Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang

Liu, Dingyu Zhang, Peng Gao, Shuai Ren, and Hongsheng
Li. Amex: Android multi-annotation expo dataset for mobile
gui agents. arXiv preprint arXiv:2407.17490, 2024.

[2] Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yan-
tao Li, Jianbing Zhang, and Zhiyong Wu. Seeclick: Harness-
ing gui grounding for advanced visual gui agents. ACL, 2024.

[3] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. Mind2web: To-
wards a generalist agent for the web. Advances in Neural In-
formation Processing Systems, 36, 2024.

[4] Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu
Koh, Kiran Kamble, Waseem Alshikh, and Ruslan Salakhut-
dinov. Omniact: A dataset and benchmark for enabling mul-
timodal generalist autonomous agents for desktop and web.
arXiv preprint arXiv:2402.17553, 2024.

[5] PyAutoGUI. Pyautogui. 2024. https://pyautogui.
readthedocs.io/en/latest/.

2

https://pyautogui.readthedocs.io/en/latest/
https://pyautogui.readthedocs.io/en/latest/

(a) ✓ Instruction: “Open wechat”. With instruction-tuning, ShowUI can recognize the
appearance of the WeChat icon.

(b) ✓ Instruction: “Rotate left”. ShowUI distinguishes the
correct operator among multiple abstract symbols.

(c) ✗ Instruction: “Zoom in”. The model visually confuses the difference
between zoom in and zoom out.

(d) ✗ Instruction: “Sign in”. There are two possible sign-in elements, but
the query lacks sufficient information to determine the correct one.

(e) ✓ Instruction: “view help for email account”. ShowUI is able to asso-
ciate “view help” with question mark clickable element.

(f) ✗ Instruction: “view my account”. ‘View my account’ could be inter-
preted as ‘Click Your Profile’ or ‘User Profile’ (top right), leading to confu-
sion.

Figure 1. Case studies on Screenspot’s Desktop (a-d) and Web (e-f) grounding,

3

(a) ✓ Instruction: “Forwarding”.
ShowUI can identify what a forward-
ing button should look like.

(b) ✓ Instruction: “Open allow siri
when locked”. ShowUI identifies the
clickable element instead of the text
itself.

(c) ✗ Instruction: “Insert from
link”. The query being confusing
as it contain both “Insert from” and
“link”

(d) ✗ Instruction: “Show soft-
wares”. The screenshot includes two
software interfaces, causing confu-
sion for the model.

Figure 2. Case studies on Screenspot’s Mobile grounding.

[6] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva,
and Timothy Lillicrap. Android in the wild: A large-
scale dataset for android device control. arXiv preprint
arXiv:2307.10088, 2023.

[7] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez,
and Percy Liang. World of bits: An open-domain platform for
web-based agents. In International Conference on Machine
Learning, pages 3135–3144. PMLR, 2017.

[8] Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu,
Xiao Xiao, Zhongyu Wei, and Duyu Tang. Android in the
zoo: Chain-of-action-thought for gui agents. arXiv preprint
arXiv:2403.02713, 2024.

4

(a) 1272 tokens → 781 components (b) 1272 tokens → 359 components (c) 1272 tokens → 265 components (d) 1272 tokens → 175 components

(e) 646 tokens → 281 components (f) 646 tokens → 230 components

(g) 1296 tokens → 740 components (h) 1296 tokens → 369 components

Figure 3. Illustration of our method constructs the UI-connected graph based on the informativeness of screenshots. (a–d) Mobile; (e–f) PC; (g–h) Web.

5

(a) Example of Weather. Original: ‘visibility’; Appearance: “A rectangular
box with 28 km in white text.”; Spatial: “Positioned below ‘WIND’ and next
to ‘PRESSURE’.”; Intention: “Check current fog or mist conditions.”

(b) Example of Stocks. Original: ‘Share option-health insurance’; Appear-
ance: “Three vertical dots icon on a dark background.”; Spatial: “Located
to the right of the health insurance headline.”; Intention: “Click to share the
health insurance article.”

(c) Example of WeChat. Original: ‘expand profile’; Appearance: “A
rounded gray button with a person icon.”; Spatial: “Located at the top-left
corner of the chat pane.”; Intention: “Expand the contact’s profile view.”

(d) Example of VLC. Original: ‘Play’; Appearance: “White triangle icon
within a black circular button.”; Spatial: “Located at the bottom left corner
of the screen.”; Intention: “Click to play the video.”

(e) Example of Terminal. Original: ‘create new tab’; Appearance: “A
small ’+’ icon in a gray tab bar.”; Spatial: “Located at the far right of the tab
bar.”; Intention: “Open a new terminal tab.”

(f) Example of Todo. Original: ‘view as list’; Appearance: “A gray, verti-
cal button with a box and lines icon.”; Spatial: “Positioned at the top right
beside the search bar.”; Intention: “Switch to list view.”

Figure 4. Illustration of how we augment the original OmniAct-Desktop annotations with diverse queries based on Appearance, Spatial Relationships, and
Intention.

6

