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Abstract

Model calibration is essential for ensuring that the predic-
tions of deep neural networks accurately reflect true prob-
abilities in real-world classification tasks. However, deep
networks often produce over-confident or under-confident
predictions, leading to miscalibration. Various methods
have been proposed to address this issue by designing ef-
fective loss functions for calibration, such as focal loss. In
this paper, we analyze its effectiveness and provide a uni-
fied loss framework of focal loss and its variants, where
we mainly attribute their superiority in model calibration
to the loss weighting factor that estimates sample-wise un-
certainty. Based on our analysis, existing loss functions fail
to achieve optimal calibration performance due to two main
issues: including misalignment during optimization and in-
sufficient precision in uncertainty estimation. Specifically,
focal loss cannot align sample uncertainty with gradient
scaling and the single logit cannot indicate the uncertainty.
To address these issues, we reformulate the optimization
from the perspective of gradients, which focuses on uncer-
tain samples. Meanwhile, we propose using the Brier Score
as the loss weight factor, which provides a more accurate
uncertainty estimation via all the logits. Extensive experi-
ments on various models and datasets demonstrate that our
method achieves state-of-the-art (SOTA) performance.1

1. Introduction

Deep Neural Networks (DNNs) have achieved remarkable
success in various domains, including image classification.
However, recent studies [5, 30] reveal that DNNs often suf-
fer from mis-calibration in classification task, exhibiting
over-confidence or under-confidence in their predictions.
For example, a model might output a confidence score of
0.8 for a particular prediction, which does not necessarily
correspond to an 80% probability of correctness.

Calibrating DNNs, which aligns the predicted confi-
dence with the true probabilities, is therefore crucial to en-

1Code is available at https://github.com/Jinxu-Lin/BSCE-GRA.

hancing their reliability in practical applications, such as
autonomous driving, medical imaging, and weather fore-
casting. To address mis-calibration issues, several meth-
ods [26, 28] have been proposed, many of which focus
on modifying the loss function during training. A com-
mon approach involves adding regularization terms with
the Cross-Entropy (CE) loss to improve calibration, as
seen in methods like Maximum Mean Calibration Error
(MMCE) [15] and Meta Calibration [1]. Additionally, Fo-
cal Loss (FL) [17], which adjusts per-sample loss weights
based on prediction difficulty, has been shown to improve
calibration performance. Mukhoti et al. [18] attribute the
effectiveness of FL to its implicit regularization on the en-
tropy of predicted probabilities, which mitigates overconfi-
dence. Similarly, Dual Focal Loss (DFL) [27] incorporates
the second-most-probable class in the weighting mecha-
nism to address model under-confidence. Another research
interest regarding calibration is the evaluation of calibra-
tion performance. Metrics commonly employed include
Expected Calibration Error (ECE)[5] and Brier Score[2].

The focal-loss-based methods can be unified under a
general loss framework expressed as u·CE, where u is a loss
weighting factor. In FL, the factor uFL can be treated as an
estimation for sample-wise difficulty . Interestingly, we ob-
serve that uFL, originally designed for binary classification,
is mathematically equivalent to the Brier Score for binary
cases, which can measure the uncertainty. Furthermore, the
weighting term uDFL in DFL aligns with the Brier Score in
three-class classification scenarios. This observation mo-
tivates the hypothesis that weighting the loss with sample
calibration metrics, such as the Brier Score, could better
identify uncertain samples and facilitate targeted training.

Furthermore, our investigation reveals a limitation of di-
rectly applying the weighting factor u to the loss term.
Specifically, the vanilla optimization of focal loss would
achieve a misalignment with the objective of scaling gra-
dients for harder samples with larger magnitudes. Based
on our analysis, we mainly attribute this issue to a differ-
entiable loss weighting factor u, which could disrupt the
positive correlation between the CE and its gradient magni-
tude during backpropagation, impeding the model’s ability

https://github.com/Jinxu-Lin/BSCE-GRA


to prioritize higher-uncertain samples effectively.
To address these issues, we first propose applying the

weighting factor to scaling the gradient rather than the loss
itself. This allows us directly aligns the gradient optimiza-
tion with sample uncertainty, which ensures that harder
samples receive appropriately scaled updates without dis-
rupting the optimization process. Within this framework,
we then introduce a generalized form of the Brier Score as
a gradient weighting factor, which provides a more accu-
rate estimation of sample uncertainty that considers all cat-
egories. This leads to the development of the BSCE-GRA
loss function, which adjusts gradient to directly scale opti-
mization based on sample uncertainty by Brier Score.

We conduct extensive experiments to validate the ef-
fectiveness of the proposed method, achieving state-of-the-
art results across various datasets and model architectures,
which demonstrate the effectiveness of our methods. The
contributions of this paper are summarized as:
1. We provide a new perspective by unifying some existing

loss modification techniques for model calibration under
a sample-weighting framework. With this framework,
we provide extensive analysis of their limitations.

2. We propose a simple yet effective optimization frame-
work for model calibration with a gradient weighting
factor, where we scale the gradients to encourage the
model to focus on uncertain samples effectively.

3. We analyze the use of different uncertainty metrics
within this framework and introduce BSCE-GRA, a new
loss function based on the Brier Score that provides an
accurate sample-wise uncertainty estimation.

4. We conduct extensive experiments under different set-
tings to validate our proposed methods. Our uncertainty-
weighted framework shows consistent effectiveness
across various uncertainty metrics, and the proposed
BSCE-GRA loss achieves state-of-the-art results.

2. Related Works
In recent years, numerous techniques have been proposed to
address the problem of network miscalibration, which can
generally be classified into three categories.

The first category is post-hoc calibration techniques,
which adjust model predictions after training by optimizing
additional parameters on a held-out validation set. These
methods include Platt Scaling [23], which performs a lin-
ear transformation on the original prediction logits; Isotonic
Regression [34], which uses piecewise functions to trans-
form logits; Bayesian Binning into Quantiles (BBQ)[20],
which extends histogram binning with Bayesian model av-
eraging; and Beta Calibration[13], initially designed for bi-
nary classification and later generalized to multi-class set-
tings with Dirichlet distributions by Kull et al. [14]. Tem-
perature Scaling [5], one of the most widely used post-hoc
calibration methods, tunes the temperature parameter in the

SoftMax function to minimize negative log-likelihood on a
held-out validation set. In this work, we report calibration
performance with post-temperature scaling results.

The second category includes regularization techniques,
which are known to effectively calibrate DNNs. Data aug-
mentation methods, such as Mixup [31] and AugMix [7],
train DNNs on mixed samples to mitigate overconfident
predictions. Model ensemble techniques, which involve
independently training multiple DNNs and averaging their
predictions, have been shown to enhance both accuracy and
predictive uncertainty by aggregating outputs from multiple
models [16, 24, 36]. Label smoothing [19], which replaces
one-hot labels with soft labels, encourages the model to
make less confident predictions, thereby reducing overcon-
fidence. Additionally, weight decay has also been demon-
strated to improve confidence calibration [5].

The third category focuses on modifying the training loss
to improve calibration. These methods include adding a dif-
ferentiable auxiliary surrogate loss for Expected Calibration
Error (ECE)[1, 10, 11] or replacing the training loss with
other loss functions, such as Mean Squared Error (MSE)[9],
Focal Loss [18], Inverse Focal Loss [32], and Dual Focal
Loss [27]. Among these, Focal Loss [18], which adds a
modulation term to the Cross-Entropy loss to focus on hard-
to-classify samples, provides a simple and effective way to
train calibrated models. Focal Loss and Dual Focal Loss
can be categorized as margin-based losses, similar to Hinge
Loss [3], Triplet Loss [25], and Margin Ranking Loss [33].

3. Preliminary

3.1. Problem Formulation

Given a K-class dataset S = {z(1), ...,z(N)}, where each
training sample z(n) := (x(n), y(n)) is an input-label pair.
Let X and Y represent the input space and the label space,
respectively. The ground truth label y ∈ Y is encoded in a
one-hot vector format, where yi = 1 if i ∈ K represents the
actual class. We define a classifier fθ trained on S that maps
an input x ∈ X to a probability distribution p̂(x). The clas-
sifier then provides a prediction k = argmaxi∈K p̂i, which
indicates the index of the predicted label. The predicted
label ŷ ∈ Y is similarly represented as y in the one-hot en-
coding of prediction k. The confidence p̂c is defined as the
predicted probability associated with the prediction k.

A well-calibrated model ensures that the provided con-
fidence p̂c accurately reflects the true probability of correct
classification. We define the true class-posterior probabil-
ity vector as η(x) = [η1(x), ..., ηK(x)], where ηk(x) =
P(y = k|x) is the true probability of class k given input
x. Formally, a network is considered perfectly calibrated if
P(ŷ = y|p̂c = p) = p for all p ∈ [0, 1] [5], which can be
also written as p̂(x) = η(x). The uncertainty of a model
for a sample x, also referred to the calibrated error c(x),



can be computed as the difference between η(x) and p̂(x):

c(x) = ∥η(x)− p̂c(x)∥. (1)

3.2. Metric for Calibrated Error
In practice, it is hard to access the ground truth probabil-
ity η(x) on real-world samples and thus the calibration er-
ror cannot be directly computed by Eq. 1, some alternative
methods have been proposed to evaluate the uncertainty.
ECE. The Expected Calibration Error (ECE) is defined
as Ep̂c

[|P(ŷ = y|p̂c) − p̂c|]. Guo et al. [5] propose an
approximation of ECE. Specifically, all samples are di-
vided into M bins {Bm}Mm=1 of equal width based on
their confidence, where each bin Bm contains all samples
whose confidences fall within the range p̂c ∈ [mM , m+1

M ).
For each bin Bm, the average confidence is computed as
Cm = 1

|Bm|
∑

i∈Bm
p̂
(i)
c and the bin accuracy is computed

as Am = 1
|Bm|

∑
i∈Bm

1(ŷ
(i)
k = y

(i)
k ), where 1 is the indi-

cator function. The ECE can then be computed as the av-
erage L1 difference between bin accuracy and confidence:

ECE =

M∑
m=1

|Bm|
N

|Am − Cm|, (2)

where N denotes the number of samples in each bin. In
addition to the ECE in Eq.2, there are several variants used
to measure calibration error. For example, AdaECE [21]
groups samples into bins Bm with an equal number of
smaples such that |Bm| = |Bn| for all bins. Another vari-
ant, ClasswiesECE [14] measure the calibration error by
considering each of the K classes separately.
Brier Score. Besides ECE computing the expectation of
calibrated error among whole datasets, some other tech-
niques have also been used to evaluate the sample-wise un-
certainty. Accuracy and calibration are distinct concepts,
and one cannot be inferred from the other unequivocally.
The Brier Score (BS) [2] unify these two concepts, which is
commonly used in calibration literature. It has been shown
that this family of metrics can be decomposed into a cal-
ibration term and a refinement term. Achieving an opti-
mal score requires both accurate predictions and appropri-
ate confidence levels. For a given sample, the Brier Score
is mathematically defined as the Mean Squared Error be-
tween the predicted probability distribution p̂ and one-hot
encoded ground truth label y. We introduce a generalized
Brier Score (gBS) form as follows:

gBS =

K∑
i=1

∥p̂i(x)− yi∥γβ (3)

where γ and β are the hyperparamters for the exponent and
norm order, respectively. When γ = 2 and β = 2, this
formulation reduces to the original Brier Score.

3.3. Calibrating Method
Temperature Scaling A widely used post-hoc technique
for improving classification calibration is temperature scal-
ing. It adjusts the sharpness of the output probability distri-
bution by scaling the logits in the SoftMax function using
a temperature parameter, defined as p̂i = exp(ĝi/T )∑K

k=1 exp(ĝk/T )
,

where ĝ represents the logits before applying the SoftMax
function, and T is the temperature that controls the scaling.
Calibration performance can be enhanced by tuning T on a
held-out validation set.
Focal Loss and Dual Focal Loss Some other previous
works have attempted to improve model calibration by
modifying the loss function. Focal Loss [17] was initially
introduced to address the foreground-background imbal-
ance problem in object detection. It addresses the issue by
incorporating a loss weighting factor based on sample com-
plexity, reducing the weight of easy samples and allowing
the model to focus on harder-to-classify instances.

Formally, given the predicted probability p̂(x) on sample
x, the focal loss is defined as:

LFL(x, y) = −
K∑
i=1

yi(1− p̂i)
γ log p̂i(x), (4)

where γ is a pre-defined hyperparameter. Previous stud-
ies [18] have demonstrated that optimizing models using
Focal Loss results in better calibration compared to Cross-
Entropy. This improvement is partly due to the entropy-
based regularization effect introduced by Focal Loss, while
complexity-based weighting also likely plays a role. How-
ever, we noticed that Focal Loss was initially applied to bi-
nary classification, where the complexity term (1 − p̂i) is
related to the Brier Score, which can also be used for eval-
uating uncertainty. In multi-class classification, although
complexity and uncertainty are not strictly equivalent, the
complexity term still captures some class-level uncertainty.

Several variants of Focal Loss exist, including Dual Fo-
cal Loss [27], which incorporates the probability from the
second most probable class into the scaling factor to address
the under-confidence issue caused by Focal Loss:

LDFL(x, y) = −
K∑
i=1

yi(1−p̂i(x)+p̂j(x))
γ log p̂i(x), (5)

where p̂j(x) = maxi{p̂i(x)|p̂i(x) < p̂gt(x)}.

4. Method
4.1. Weighting with Sample-wise Uncertainty
Focal Loss and Dual Focal Loss both support the concept
that uncertainty-based weighting in conjunction with Cross
Entropy can enhance model calibration. We propose a gen-
eralized loss function framework, termed Uncertainty CE



Loss, which incorporates a sample-wise uncertainty metric
into Cross Entropy as a weighting factor:

LUncertainty(x, y) = −
K∑
i=1

u(p̂i(x)) · yi log p̂i(x), (6)

where u(p̂i) is the adaptive term that evaluates the uncer-
tainty of sample x. The motivation behind this design is to
use the predicted calibration error for each sample to scale
the loss function, thereby directing the model’s optimization
more effectively towards samples with higher uncertainty.

Therefore, the weights used in Focal Loss is given by:

uFL(p̂(x)) = (1− p̂c)
γ . (7)

And the scaling term in Dual Focal Loss is defined as:

uDFL(p̂(x)) = (1− p̂c(x) + p̂j(x))
γ , (8)

where p̂j(x) is the second maximum confidence in predic-
tion. The weight used in Focal Loss can be seen as derived
from the Brier Score, focusing on the error of the ground
true class. In contrast, the scaling term in Dual Focal Loss
incorporates uncertainty information from the second most
probable class. However, directly weighting loss function
with certain uncertainty metrics, as those used in Focal Loss
and Dual Focal Loss, presents several challenges.

Reviewing our objectives, we aim to weight the loss
function value by each sample’s uncertainty, resulting in
greater optimization steps for those samples with higher un-
certainty. Our focus actually is not on the loss value itself,
but on the optimization. The purpose of uncertainty weight-
ing is to focus the model’s attention on samples with higher
uncertainty. Thus, the key factor is the gradient: higher
weights should lead to larger gradients, resulting in more
substantial model updates for those samples. For Cross
Entropy, its value is positively correlated with the gradi-
ent: a higher CE value yields a larger gradient, leading to
more significant updates for optimization. When applying
a scalar weight to CE, this relationship remains intact, as it
does not disrupt the positive correlation.

However, for differentiable weights, directly applying
them to the loss can disrupt the positive correlation be-
tween the loss and the gradient, ultimately impairing ef-
fective model optimization. To further analyze this, let us
consider Focal Loss. For Focal Loss LFL and Cross Entropy
LCE, their gradients are given by: ∂

∂wLFL = g(p̂i, γ)
∂
∂wLCE,

where g(p, γ) = (1−p)γ−γp(1−p)γ−1 log(p), γ is a pre-
defined hyperparameter, and w represents the parameters of
the final linear layer. From a gradient perspective, g(p, γ)
acts as a weight on the CE gradient, which is illustrated in
Figure 1. There exists a point p0 ∈ [0, 1] such that within
the range [0, p0], ∂

∂pg(p, γ) > 0 and within the range [p0, 1],
∂
∂pg(p, γ) < 0. In binary classification, 1 − p̂i is related to
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Figure 1. g(p, γ) of Focal Loss vs predicted confidence p̂c.

the Brier Score that reveals calibrated error, indicating that
the predicted calibrated error is not always positively corre-
lated with the weight on gradient. As uncertainty decreases,
the weight on gradient initially increases, before eventually
aligning with the level of uncertainty. This causes the model
to focus more on samples with moderate uncertainty rather
than those with the highest uncertainty, which contradicts
our original goal of emphasizing the most uncertain sam-
ples. Further, changes in uncertainty are not immediately
reflected in the sample weights; instead, multiple training
iterations are required for these changes to align properly.
Thus, directly applying some kind of uncertainty metrics
into Eq. 6 would pose issues to the uncertainty weighting.

4.2. Sample-wise Uncertainty on Gradients
The discussion in Sec. 4.1 motivates us to ensure the weight
on gradients for a sample to align with its uncertainty. This
could be intuitively solved by directly applying the model
uncertainty on samples as a weight of the gradient. We de-
fine the modified gradient as:

∂

∂θ
LUncertainty-GRA(x, y) = u(p̂(x))

∂

∂θ
LCE(x, y). (9)

Taking a SGD optimizer as an example, the model update
can be expressed as: θt+1 = θ + α · ∂

∂θLUncertainty-GRA(x, y),
where θ is the model parameters and α is the learning rate.
When the predicted uncertainty on sample x is higher, the
optimization step results in a larger update, encouraging the
model to focus more on uncertain samples. A general form
of the loss function for our uncertainty-weighted gradient
framework, termed Uncertainty-GRA CE Loss, is defined
as:

LUncertainty-GRA(x, y) = −
∫ K∑

i=1

u(p̂(x)) · yi
p̂i(x)

dp̂(x), (10)

In practice, to compute the LUncertainty-GRA, we can detach the
gradient of u(p̂(x)) and multiply it with the Cross Entropy,
instead of calculating the gradient integration.



(a) An illustration of the uFL. (b) An illustration of the uDFL. (c) An illustration of the uBS.

Figure 2. An illustration of value of gradient weight function on a 4 class classification. It is obvious that uFL varies only along the pi axis
and uDFL changes along the pi and pj axes. uBS responds to changes across all axes, providing a more complete uncertainty evaluation.

4.3. Sample-wise Uncertainty Metrics
With Eq. 10, calibration can be achieved by employing the
sample’s ground-truth uncertainty as the scaling term. How-
ever, accessing the ground-truth uncertainty for real-world
image samples is impractical. Therefore, alternative metrics
are required to estimate the sample-wise uncertainty u(x).

One approach to evaluate sample-wise uncertainty is
based on computing the generalized Brier Score (gBS):

ugBS(p̂(x)) =

K∑
i=1

∥p̂i(x)− yi∥γβ . (11)

We provide a brief discussion on the effectiveness of the
generalized Brier Score (gBS) as a measure of calibration
error. When using the Brier Score (BS) to evaluate calibra-
tion error, with β = 2 and γ = 2, the difference between the
expected and predicted calibration error is given by:

c(x)− uBS(p̂(x)) = Ey∼η(x)[∥p̂(x)− η(x)∥22 − ∥p̂(x)− y∥22]

=

K∑
k=1

ηk(x)(ηk(x)− 1). (12)

Thus, the term
∑K

k=1 ηk(x)(ηk(x)− 1) depends solely on
η(x) which is fixed for a given sample x. Consequently, the
error remains constant for a specific sample x. We provide
a detailed computation of Eq. 12 in Appendix.

Several variants of ugBS(p̂) have demonstrated their ef-
fectiveness in previous studies. When β = 1 and only the
actual class is considered, the generalized Brier Score can
be interpreted as the scaling term in Focal Loss in Eq. 7.
When β = 1 and both the actual class and the maximum
predicted class (excluding the actual class) are considered,
the generalized Brier Score can be interpreted as the scaling
term in Dual Focal Loss in Eq. 8.

However, these two metrics only consider several classes
in the predicted probability . In the case of Focal Loss,
which was originally designed for binary classification,

considering one-dimensional uncertainty is sufficient due to
the constraint that the sum of probabilities must equal 1.
When extended to multi-class classification, these metrics
are not accurate enough to evaluate uncertainty.

We visualize the gradient weights uFL, uDFL and uBS in
Figure 2 for a 4-class scenario. The three axes represent
three dimensions of the predicted probability, while the
fourth is implied by the probability sum constraint. From
the figure, it is evident that uFL and uDFL are sensitive only
to changes in one or two dimensions. However, different
points in the coordinate system have different uncertain-
ties. They fail to adequately capture uncertainty change
across all dimensions. But the uBS can accurately respond
to changes along any coordinate axis.

To further evaluate whether these metrics accurately
measure the ground truth uncertainty of samples, we con-
ducted experiments on a toy dataset. The toy dataset con-
sists of 5 two-dimensional Gaussian distributions, repre-
senting 5 groups of data: N (µi,Σ), i ∈ {0, ..., 5}. The
mean vectors µi were randomly sampled from the range
[−10, 10] and Σ = I was used as the shared covariance ma-
trix for all groups. We generated 10,000 data points from
each group to form the training dataset, which was used
to train a two layer CNN model for 5 epochs. An addi-
tional 1,000 samples from each distribution were used to
create the test dataset. Therefore, the ground truth proba-
bility η(x) can be computed using the probability density
function (PDF) of each distribution:

η(x) =
pn(x)∑N
i pi(x)

, (13)

where N = 5 in this case, pn(x) and pi(x) are the PDF
of corresponds class for x and remaining classes, respec-
tively. The ground truth uncertainty of each sample is cal-
culated by Eq. 1, representing the model’s ground truth un-
certainty for each sample, along with the sample-wise un-
certainty metrics uFL, uDFL and ugBS. To validate the accuracy



Dataset Model CE BL MMCE FLSD DFL BSCE BSCE-GRA
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR10

ResNet50 4.36 1.32 4.29 1.50 4.48 1.41 1.26 1.15 1.00 1.00 0.88 0.88 0.74 0.74
ResNet110 4.7 1.56 4.48 1.66 4.80 1.29 1.81 1.17 1.01 1.01 0.99 0.99 0.87 0.87

WideResNet 3.35 0.94 2.86 1.10 3.65 1.28 1.84 1.04 3.32 1.16 1.7 0.95 1.46 1.12
DenseNet 4.64 1.46 3.96 1.46 4.81 1.67 1.37 1.17 0.87 0.77 1.01 1.01 0.87 0.87

CIFAR100

ResNet50 18.05 3.05 7.87 4.27 15.87 3.32 5.53 2.57 2.54 2.56 1.90 1.90 1.59 1.59
ResNet110 18.84 4.63 16.77 4.30 18.65 3.93 6.88 3.71 3.47 3.47 2.75 2.75 2.53 2.53

WideResNet 14.81 3.27 7.74 4.46 14.58 2.99 2.70 2.71 5.45 2.52 2.63 2.42 2.46 2.46
DenseNet 19.1 3.43 8.13 2.99 17.56 2.87 3.38 1.30 4.68 1.83 1.63 1.62 1.62 1.61

TinyImageNet ResNet50 14.94 5.16 7.81 1.47 14.58 2.99 2.18 2.18 6.71 2.28 4.0 1.76 4.57 1.47

Table 1. Comparison of Calibration Methods Using ECE Across Various Datasets and Models. ECE values are reported using 15
bins, with the best-performing method for each dataset-model combination highlighted in bold. Results are averaged over three runs with
different random seeds.
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Figure 3. Comparison of different ECE metrics. The first three plots show the uncertainty for CIFAR-10 using ResNet-50, while the
remaining plots represent ResNet-110 on CIFAR-10.

of these metrics, we used Pearson correlations between the
calibrated error and the uncertainty metrics to verify their
positive correlation among 5 runs. We use grid-search to
find the optimal hyper-parameter for each methods. Among
the methods, gBS achieves the highest Pearson correlation
coefficient of 0.664, indicating the strongest linear relation-
ship between the predicted values and the true targets. DFL
follows with a correlation of 0.638, while FL has the low-
est correlation at 0.550. This suggests that gBS provides the
most accurate predicted uncertainty alignment with ground-
truth uncertainty, followed by DFL and FL.

Based on the results, we conclude that although ground-
truth uncertainty is inaccessible for real-world datasets,
these alternative metrics provide a reliable means of es-
timating uncertainty, making them suitable for use during
training. Besides, the metric ugBS has the best performance
compared to the uncertainty metric used in Focal Loss and
Dual Focal Loss. We incorporate ugBS into the gradient-
weighted framework discussed in Section 4.2 and introduce
a new loss function called BSCE-GRA. This loss function
uses the generalized Brier Score as an adaptive uncertainty
metric to weight the Cross Entropy gradients, defined as:

LBSCE-GRA(x, y) = −
∫ K∑

i=1

ugBS(p̂(x)) ·
yi

p̂i(x)
dp̂(x). (14)

To further validate the effectiveness of proposed method,
we provide a comprehensive theoretical evidence that op-
timizing with BSCE-GRA, the K-class predicted proba-
bility q would equal the actual class-posterior probability

η, thereby preventing over/under-confidence when conver-
gence. Due to page limitation, the proof is provided in Ap-
pendix.

Besides, the Uncertainty-GRA Loss makes it possible to
use non-differentiable uncertainty metrics for model cali-
bration. However, it requires the weights to capture sample-
wise uncertainty, whereas some existing measurements like
ECE can only compute the uncertainty for a group of sam-
ples, making them unsuitable for the proposed framework.

5. Experiment
We evaluate our methods on multiple deep neural networks
(DNNs), including ResNet50, ResNet110 [6], WideRes-
Net [35], and DenseNet [8]. Our experiments are conducted
on CIFAR-10, CIFAR-100 [12], and Tiny-ImageNet [4] to
assess calibration performance. Further details about the
datasets can be found in the appendix.
Baselines. We compare our methods, BSCE, BSCE-GRA,
and ECE-CE, with multiple existing approaches, includ-
ing training with Cross Entropy (CE), Brier Loss (BL)[2],
MMCE Loss[15], Focal Loss with Adaptive Exponent
(FLSD)[18], and Dual Focal Loss[27]. For Focal Loss, we
employ the FLSD-53 strategy [18] to adaptively adjust the
gamma value sample-wise, setting γFL = 5 for p̂c ∈ [0, 0.2)
and γFL = 3 for p̂c ∈ [0.2, 1). For Dual Focal Loss, the
gamma value is set to 5, as reported in the original work.
Training Setup. Our training setup follows prior
works [18, 27]. We train CIFAR-10 and CIFAR-100 for 350



(a) Gradient norm distribution at
epoch 50

(b) Gradient norm distribution at
epoch 150

(c) Gradient norm distribution at
epoch 250

(d) Gradient norm distribution at
epoch 350

Figure 4. Evolution of gradient norm distributions across different training epochs for various loss functions. The scatter plots show the
relationship between gradient norm and Brier Score for different loss functions (Focal Loss, Dual Focal Loss, BSCE-GRA).

Metrics FLSD FLSD-GRA DFL DFL-GRA BSCE BSCE-GRA
pre T post T pre T post T pre T post T pre T post T pre T post T pre T post T

Acc 95.04% 95.04% 94.72% 94.72% 94.63% 94.63% 94.76% 94.76% 95.03% 95.03% 94.69% 94.69%
ECE 1.26 1.15 0.88 0.88 1.00 1.00 0.93 0.84 0.88 0.88 0.74 0.74
Ada ECE 1.56 1.45 1.19 1.19 1.22 1.22 0.77 0.81 0.96 0.96 0.71 0.71

Table 2. Comparison of weighting different uncertainty metrics on gradient or loss function, including uFL and uFL. The results validate the
effectiveness of the gradient-weighting strategy among different uncertainty metrics.

epochs, using 5,000 images from the training set for valida-
tion. The learning rate is initially set to 0.1 for the first
150 epochs, then reduced to 0.01 for the next 100 epochs,
and further reduced to 0.001 for the remaining epochs. For
Tiny-ImageNet, we train for 100 epochs, with the learning
rate set to 0.1 for the first 40 epochs, 0.01 for the next 20
epochs, and 0.001 for the remaining epochs. All exper-
iments are conducted using SGD with a weight decay of
5 × 10−4 and a momentum of 0.9. The training and test-
ing batch sizes for all datasets are set to 128. We re-run all
baseline methods using three different random seeds (1, 42,
and 71), and report the average results. All experiments are
performed on a single Nvidia 4090 GPU. For temperature
scaling, the temperature parameter T is optimized through
a grid search with T ∈ [0, 0.1, 0.2, ..., 10] on the validation
set, selecting the value that yields the best post-temperature-
scaling Expected Calibration Error (ECE). The same op-
timized temperature parameter is applied to other metrics,
such as AdaECE. Further details on the datasets and addi-
tional experimental setup are provided in the appendix.

5.1. Calibration Performance

We report the average ECE before and after temperature
scaling among three random seeds, along with the corre-
sponding optimal temperatures, in Table 1. BSCE-GRA
achieves state-of-the-art ECE performance in most cases,
particularly in the pre-temperature-scaling results. No-
tably, the fact that most of the optimal temperatures for
BSCE-GRA are found to be 1 indicates that BSCE-GRA
trains an inherently calibrated model, capable of achiev-
ing strong calibration performance without the need for ad-
ditional temperature scaling. This is a crucial advantage

for developing accurate and reliable models that are effi-
cient and require minimal post-processing. The results on
CIFAR-10 generally show better calibration performance
compared to datasets with more labels (e.g., CIFAR-100
and Tiny-ImageNet) across multiple models. Regarding
network architecture, ResNet-50 demonstrates the best cali-
bration performance among the four DNNs tested (ResNet-
50, ResNet-110, Wide-ResNet-26-10, and DenseNet-121)
on both CIFAR-10 and CIFAR-100 datasets.

Different Metrics. The methods are further evaluated
using several widely-accepted metrics to assess calibra-
tion performance across models, including Adaptive ECE
and Classwise-ECE. Adaptive ECE measures the expected
calibration error while accounting for the distribution of
the data, whereas Classwise-ECE is a variant that eval-
uates calibration error for each class individually. Fig-
ure 3 presents the results of multiple methods using ResNet-
50 and ResNet-110 on the CIFAR-10 dataset. The fig-
ure demonstrates that BSCE-GRA is the only method that
achieves both inherently calibrated models and state-of-the-
art performance across various metrics. Additional results
are presented in the appendix, providing further evidence of
the effectiveness of our method in model calibration.

Calibration over Training. Figure 5a presents the ECE on
the test set for models trained with Focal Loss and Cross-
Entropy loss over the entire training period on CIFAR-
10 using ResNet-50. To improve visualization, the ECE
values are smoothed using an exponential moving aver-
age. The figure suggests that, after the initial warm-up
epochs, where predicted probabilities are unstable, the ECE
of models trained with BSCE-GRA and Focal Loss con-
sistently remains lower compared to models trained with
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Figure 5. Figure 5a presents the evolution of ECE throughout the training process, demonstrating that our method rapidly converges to the
best result by epoch 250. The subsequent figures depict the gradient magnitudes of various methods between epochs 150 and 250.

Cross-Entropy. It also indicates that, during training with a
moderate learning rate from epochs 150 to 200, Focal Loss
tends to produce better-calibrated models than BSCE-GRA.
This may be due to the fact that, during these epochs, the
model makes more predictions with mid-range confidence
levels, and as shown in Figure 1, Focal Loss directs the
model’s attention towards these moderately uncertain sam-
ples. In contrast, BSCE-GRA imposes stronger regulariza-
tion on the gradient, resulting in smaller optimization steps
compared to Focal Loss. To further validate this hypothe-
sis, we present the gradient density of the last linear layer
across the entire training set at epochs 150 and 250 in Fig-
ure 5b and Fig. 5c, which shows that BSCE-GRA results
in smaller gradient magnitudes during these epochs. After
250 epochs, when the learning rate undergoes its second re-
duction, the model trained with BSCE-GRA soon achieves
better calibration performance compared to FL and CE.

5.2. Gradient Value among Uncertainty
We extend our analysis to examine the relationship between
gradient magnitude and uncertainty. Specifically, we com-
pute the gradient norms of the last linear layer for all sam-
ples in the training set at epochs 50, 150, 250, and 350.
To quantify uncertainty, we calculate the Brier Score for
each training sample. We present the results for Focal Loss
(FL), Dual Focal Loss (DFL), and BSCE-GRA. Figure 4
illustrates the relationship between gradient magnitude and
Brier Score. The figure clearly shows that the gradients pro-
duced by BSCE-GRA are the most sensitive to changes in
the Brier Score, as indicated by the narrow distribution com-
pared to other loss functions. This aligns with our goal: we
aim for BSCE-GRA to exhibit sufficient sensitivity to un-
certainty, allowing the model to adjust its gradient values
based on changes in uncertainty, thereby focusing more on
highly uncertain samples. Notably, the gradient distribution
for Dual Focal Loss is relatively more dispersed concerning
the Brier Score, with a wider range of possible values com-
pared to other loss functions. This could be attributed to
the partial derivatives involving other classes, as Dual Fo-
cal Loss takes the second most probable class into account

in its loss calculation. In contrast, Focal Loss and BSCE-
GRA only involve gradients along a single dimension.

5.3. Weighting FL and DFL on Gradients

We evaluate the performance of directly applying the un-
certainty terms uFL and uDFL as weights on the gradients.
Experiments are conducted using the default settings dis-
cussed above, on CIFAR-10 with ResNet-50. The results
are presented in Table 2. It is evident that applying weights
on gradients results in performance improvement for both
uFL and uDFL, further validating its effectiveness.

We conduct additional experiments to comprehensively
validate our proposed method, BSCE-GRA, under various
settings. Due to page limitations, the extended experiments
are provided in the Appendix.

6. Conclusion

In this paper, we proposed a novel approach to model cal-
ibration by directly weighting gradients based on uncer-
tainty. We analyzed the strengths and limitations of Focal
Loss and Dual Focal Loss from the perspective of sample
weighting and introduced a framework that scales gradi-
ent magnitudes based on model uncertainty to focus more
on uncertain samples. Additionally, we introduced BSCE-
GRA, a loss function incorporating uncertainty metrics to
enhance model calibration. Extensive experiments on vari-
ous datasets and network architectures demonstrated signif-
icant improvements in calibration performance, achieving
state-of-the-art results. Our findings emphasize the value of
integrating uncertainty-aware mechanisms directly into the
optimization process, providing a reliable framework for
training calibrated deep neural networks suitable for real-
world applications requiring trustworthy predictions. Fu-
ture work may explore further optimization strategies for
uncertainty-weighted approaches and their impact on tasks
like active learning and robustness to adversarial attacks.
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8. Proof of Equation 12
For the MSE term in Eq. 12, we will have:

||p̂− y||2 =

K∑
k=1

(p2k − 2pkyk + yk), (15)

as the y is a one-hot vector. Besides, the one-hot la-
bels y are sampled from Bernoulli Distributions: yk ∼
Bernoulli(ηk(x)), and the expectation of MSE can be com-
puted as:

Ey∼η(x)[||p̂− y||2] =
K∑

k=1

(p2k − 2pkE[yk] + E[yk]). (16)

Since E[yk] = ηk, we will have:

c(x)− uBS(p̂(x)) = Ey∼η(x)[∥p̂(x)− η(x)∥22 − ∥p̂(x)− y∥22]

=

K∑
k=1

ηk(x)(ηk(x)− 1). (17)

9. Theoretical Evidence for the Effectiveness of
BSCE-GRA

Here, we prove that under strict convergence, the K-class
predicted probability q equals the actual class-posterior
probability η, thereby preventing over/under-confidence.
For BSCE-GRA, we introduce the Lagrangian equation of
BSCE-GRA as

L = [

K∑
i=1

(qi − ηi)
2](−

K∑
i=1

ηi log qi) + µ(

K∑
i=1

qi − 1)

(18)

under the constraint
∑K

i=1 qi = 1, where [·] denotes detach-
ing the gradient. Since the MSE term can be considered as
a constant C, considering the derivatives w.r.t q∗i as 0, we
have µ = Cηi/qi for any i. Therefore, for any class i, there
exists a constant k s.t. qi = kηi. Considering the constraint∑K

i=1 qi = 1, we find that k = 1 and thus qi = ηi, which
implies that this is an optimal minimum solution. When
q = η, both MSE and CE equal 0. When q ̸= η, BSCE-
GRA> 0. Thus, the BSCE-GRA achieves a minimum when
q = η.

We consider the extreme case for further evidence.
When ηi = 1, L(q) ⊃ (qi − 1)2(− log qi). The loss be-
comes 0 when qi = ηi = 1. When ηi = 0, L(q) ⊃
(qi − 0)2(−0 · log qi) = 0. For all classes,

∑K
i=1 qi = 1.

Therefore, qi = 0 is the optimal solution for the class where
ηi = 0. The optimal solution q = η ensures the mitigation
of over/under-confidence.

10. Dataset Desciption
We evaluate the performance of our proposed method,
BSCE-GRA on multiple datasets to assess its calibration
capabilities and robustness. The datasets include CIFAR-
10/100 [12] and Tiny-ImageNet [4]. Below, we provide
specific details for each dataset used:

CIFAR-10 CIFAR-10 consists of 60,000 32 × 32 color
images divided into 10 classes, with 6,000 images per class
(50,000 training and 10,000 test images). The classes in-
clude airplanes, cars, birds, cats, deer, dogs, frogs, horses,
ships, and trucks. This dataset is widely used in image clas-
sification tasks due to its simplicity and balanced class dis-
tribution. For our evaluation, we use 5,000 images from the
training set for validation, ensuring a balanced split between
training and validation data.

CIFAR-100. CIFAR-100 follows a similar structure to
CIFAR-10 but with 100 classes, each containing 600 images
(500 training and 100 test images per class). The classes in
CIFAR-100 are more fine-grained compared to CIFAR-10,
making it a more challenging dataset for image classifica-
tion. Each class belongs to one of 20 superclasses, adding
an additional layer of complexity to the classification task.
This dataset allows us to evaluate the performance of our
methods on a more complex and diverse set of visual cate-
gories.

Tiny ImageNet. Tiny ImageNet is a subset of the larger
ImageNet dataset, consisting of 100,000 images across 200
classes, with each image resized to 64 × 64 pixels. Each
class contains 500 training images, 50 validation images,
and 50 test images. Tiny ImageNet is commonly used
for benchmarking image classification models, providing
a challenging task due to the increased number of classes
compared to CIFAR-10/100 and the reduced image resolu-
tion compared to the original ImageNet dataset. The diver-
sity and scale of Tiny ImageNet make it suitable for evaluat-
ing the robustness and scalability of our proposed methods.

11. Comparison Methods
To assess the effectiveness of our proposed algorithm, we
compare it against several established methods. Details of
these comparison methods are provided below:

Brier Loss [2]. Brier Loss calculates the squared error
between the softmax logits and the one-hot encoded labels.
It serves as a measure of both model calibration and accu-
racy.

MMCE Loss [15]. Maximum Mean Calibration Error
(MMCE) is a kernel-based auxiliary loss used alongside
Negative Log-Likelihood (NLL) to enhance calibration per-



Dataset Model CE BL MMCE FLSD DFL BSCE BSCE-GRA

CIFAR10

ResNet50 95.08 94.34 95.04 95.04 94.63 95.03 94.69
ResNet110 94.84 94.41 94.91 94.76 94.79 94.88 94.72

WideResNet 96.03 95.88 95.74 95.75 95.82 95.78 95.77
DenseNet 94.95 94.35 94.73 94.92 94.58 94.76 94.84

CIFAR100

ResNet50 77.22 72.47 77.49 77.69 76.70 77.12 76.84
ResNet110 77.44 74.42 77.42 77.77 77.27 77.30 77.16

WideResNet 79.51 78.72 79.14 80.44 80.35 79.96 80.28
DenseNet 76.76 73.32 76.07 77.29 77.02 76.82 76.96

TinyImageNet ResNet50 49.88 27.66 48.81 51.98 51.04 50.06 50.21

Table 3. Comparison of Calibration Methods Using Accuracy Across Various Datasets and Models.

Dataset Model CE BL MMCE FLSD DFL BSCE BSCE-GRA
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR10

ResNet50 4.34 2.09 4.28 1.87 4.47 2.11 1.56 1.45 1.22 1.22 0.96 0.96 0.71 0.71
ResNet110 4.70 2.46 4.48 2.11 4.80 2.24 1.89 1.56 1.20 1.20 1.38 1.38 1.28 1.28

WideResNet 3.35 1.87 2.86 1.82 3.62 1.98 1.92 1.57 3.12 1.43 1.72 1.53 1.76 1.60
DenseNet 4.61 2.43 3.96 1.67 4.81 2.38 1.44 1.52 0.85 0.96 0.99 0.99 1.09 1.09

CIFAR100

ResNet50 18.04 3.84 7.86 4.27 15.85 3.28 5.50 2.76 2.68 2.85 2.22 2.22 1.82 1.82
ResNet110 18.84 5.90 16.77 4.41 18.65 4.69 6.85 3.71 3.90 3.90 2.71 2.71 2.43 2.43

WideResNet 14.79 3.43 7.55 4.52 14.57 3.22 2.67 2.64 5.50 2.58 2.64 2.37 2.48 2.48
DenseNet 19.09 3.93 8.05 3.09 17.55 2.85 3.29 1.50 4.69 1.76 1.62 1.62 1.52 1.52

TinyImageNet ResNet50 14.93 5.15 6.80 1.38 13.50 4.92 1.90 1.90 6.71 2.20 4.00 1.70 4.56 1.34

Table 4. Comparison of Calibration Methods Using AdaECE Across Various Datasets and Models. AdaECE values are reported
using adaptive binning, with the best-performing method for each dataset-model combination highlighted in bold. Results are averaged
over three runs with different random seeds.

formance. It leverages a Reproducing Kernel Hilbert Space
(RKHS) to evaluate and reduce miscalibration during train-
ing.

Focal Loss [18]. FLSD-53 is a simplified version of
the sample-dependent gamma (γ) approach in Focal Loss.
Mukhoti et al. [18] introduced a scheduling mechanism for
gamma, replacing the original fixed value. Specifically,
they set γfocal = 5 for p̂c ∈ [0, 0.2) and γfocal = 3 for
p̂c ∈ [0.2, 1].

Dual Focal Loss [27]. Dual Focal Loss (DFL) extends
Focal Loss by incorporating the second highest predicted
probability into the uncertainty metric. This helps mitigate
model underconfidence and improve calibration. In our ex-
periments, we set γDualFocal = 5 as suggested by their reported
findings.

12. Performance on Different Metrics
We report the accuracy of each method in different settings
in Table 3. Although BSCE-GRA has the best calibra-
tion performance according to the ECE results in Table 1,
it shows a competitive performance in accuracy compared

with other methods. Adaptive-ECE is a calibration perfor-
mance measure designed to address the bias inherent in the
equal-width binning scheme used by ECE. It adapts the bin
size based on the number of samples, ensuring an even dis-
tribution of samples across bins. The formula for Adaptive-
ECE is as follows:

Adaptive-ECE =

B∑
i=1

|Bi|
N

|Ii − Ci| s.t.∀i, j · |Bi| = |Bj |

(19)
Table 4 shows that BSCE-GRA has the most optimal case
compared to other methods, especially in the CIFAR100.
Classwise-ECE is an alternative measure of calibration per-
formance that overcomes the limitation of ECE, which only
evaluates the calibration of the predicted class. It can be
formulated as:

Classwise-ECE =
1

K

B∑
i=1

K∑
j=1

|Bi,j |
N

|Ii,j − Ci,j | (20)

where Bi,j denotes the set of samples with the jth class label
in the ith bin, Ii,j and Ci,j represents the accuracy and confi-



Dataset Model CE BL MMCE FLSD DFL BSCE BSCE-GRA
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR10

ResNet50 0.90 0.46 0.90 0.50 0.92 0.51 0.41 0.42 0.40 0.40 0.38 0.38 0.38 0.38
ResNet110 0.97 0.50 0.95 0.53 0.98 0.53 0.47 0.44 0.42 0.42 0.40 0.40 0.39 0.39

WideResNet 0.71 0.38 0.63 0.40 0.76 0.41 0.44 0.35 0.83 0.37 0.44 0.35 0.38 0.35
DenseNet 0.96 0.52 0.85 0.49 0.99 0.53 0.41 0.38 0.42 0.38 0.40 0.40 0.37 0.37

CIFAR100

ResNet50 0.40 0.21 0.24 0.24 0.36 0.21 0.21 0.21 0.21 0.20 0.21 0.21 0.20 0.20
ResNet110 0.41 0.22 0.38 0.23 0.41 0.21 0.22 0.22 0.21 0.21 0.21 0.21 0.21 0.21

WideResNet 0.33 0.21 0.22 0.22 0.32 0.21 0.18 0.19 0.23 0.19 0.20 0.19 0.19 0.19
DenseNet 0.42 0.23 0.25 0.24 0.39 0.23 0.19 0.20 0.24 0.20 0.21 0.21 0.20 0.20

TinyImageNet ResNet50 0.22 0.17 0.17 0.14 0.21 0.17 0.16 0.16 0.17 0.16 0.16 0.16 0.17 0.16

Table 5. Comparison of Calibration Methods Using Classwise ECE Across Various Datasets and Models. Classwise ECE values are
reported for each dataset-model combination, with the best-performing method highlighted in bold. Results are averaged over three runs
with different random seeds.
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dence of samples in Bi,j . Table 5 indicates that all methods
perform similarly in terms of Classwise-ECE, yet BSCE-
GRA consistently achieves the best results across most set-
tings.

13. Reliability Diagram Variants Across Dif-
ferent Settings

We track the number of test samples classified correctly or
incorrectly throughout the training process at epochs 50,
150, 250, and 350, as shown in Figure 7 and Figure 8.
The confidence represents the probability assigned to the
ground-truth class, and we report the frequency of both cor-
rect and incorrect predictions.

These figures provide insight into how different loss
functions influence model predictions. Notably, Cross En-
tropy tends to produce predictions with high confidence
from early on in training. By the final epoch, Cross En-
tropy frequently assigns near 100% confidence to predic-
tions, even when they are incorrect. In contrast, other loss
functions impose constraints that limit overconfident pre-
dictions.

Exp 3 4 5 6 7 8
ECE 2.78 1.13 2.83 5.13 6.96 9.28

Table 6. Exponent Comparison on CIFAR100 with ResNet50

14. Hyperparameter Selection of BSCE-GRA

We determine the optimal hyperparameters for BSCE-
GRA, including γ and β, using cross-validation, a standard
approach as mentioned by [18]: ”Finding an appropriate γ
is normally done using cross-validation. Traditionally, γ is
fixed for all samples in the dataset.” We observe that the
FLSD-53 strategy is employed in [18] to better control gra-
dient magnitudes by achieving a more favorable trade-off
in the functionu(p̂(x)) in Eq. 9, as discussed in the same
work. The primary reason we use fixed hyperparameters
in our method, rather than an adaptive γ strategy, is that
BSCE-GRA inherently achieves gradient magnitude con-
trol and favorable trade-offs during optimization. We ac-
knowledge that tuning γ can improve calibration perfor-
mance with Focal Loss. However, our proposed DFL also
fulfills the requirements described in [18] by incorporating
additional logits into the calculation. Moreover, we pro-
vide further empirical results for the selection of γ and β
using ResNet50 on CIFAR-10, including ECE and predic-
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(a) CE at epoch 50

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2000

4000

6000

8000

Fr
eq

ue
nc

y

Confidence Frequency Histogram (Correct vs Incorrect Predictions)
Correct Predictions
Incorrect Predictions

(b) CE at epoch 150
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(c) CE at epoch 250
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(d) CE at epoch 350
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(e) FL at epoch 50

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2000

4000

6000

8000

Fr
eq

ue
nc

y

Confidence Frequency Histogram (Correct vs Incorrect Predictions)
Correct Predictions
Incorrect Predictions

(f) FL at epoch 150
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(g) FL at epoch 250
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(h) FL at epoch 350

Figure 7. Correct and Wrong Predictions with Cross Entropy and Focal Loss among different epochs.
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(a) DFL at epoch 50
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(b) DFL at epoch 150
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(c) DFL at epoch 250
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(d) DFL at epoch 350
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(e) BSCE at epoch 50
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(f) BSCE at epoch 150
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(g) BSCE at epoch 250
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(h) BSCE at epoch 350

Figure 8. Evolution of confidence distributions under different training epochs for various loss functions. The histograms and density
curves illustrate the confidence distributions of different loss functions (FL, DFL, BSCE, BSCE-GRA) during training. This comparison
reveals how different loss functions shape the model’s confidence throughout the training process.



Loss CE FL BSCE-GRA
ECE 2.07 1.16 0.93

Table 7. ECE performance on ViT among CE, FL and BSCE-GRA

tion error, as shown in Figure 6a and Figure 6b. We also
conduct the exponent hyperparameter comparison on CI-
FAR100 with ResNet50, the results are provided in Table 6.

15. Computation Efficiency
We further conduct experiments to validate the computa-
tion efficiency of BSCE-GRA. Although BSCE-GRA intro-
duces an additional MSE calculation compared to CE, but
does not affect backpropagation and has no significant im-
pact on training time. We train a ResNet50 on CIFAR10
with default experiment setting. The running time of CE
and BSCE-GRA are 128 and 139 mins, separately.

16. Effectiveness on More Model Structure
To further validate the effectiveness of the proposed method
across a wider range of model architectures, we fine-tune a
ViT model pretrained on IN-1K for 50 epochs on CIFAR-
10 using different loss functions, including CE, FL, and
BSCE-GRA. The backbone model is obtained from Hug-
ging Face 2, and we follow their fine-tuning guide through-
out the process. The results are reported in Table 7.

16.1. Sample-wise Calibration Metric
The proposed framework leverages sample-wise uncer-
tainty as a gradient weight to enhance calibration. How-
ever, most existing calibration metrics, such as Expected
Calibration Error (ECE), rely on binning strategies, mak-
ing them unsuitable for directly measuring sample-wise cal-
ibration. A potential solution for evaluating sample-wise
calibration is to measure the difference between ground
truth and predicted probabilities. Although obtaining accu-
rate ground truth probabilities is challenging, datasets like
CIFAR-10H [22] approximate them through human annota-
tions. Predicted probabilities from models may still exhibit
bias, but they can be calibrated using methods like ”consis-
tency” [29] or temperature scaling. Tao et al. [29] perturb
the model feature for a sample with a noise several times
and consider the expectation of predicted probability as a
local consistency of the sample. If the sample is less cer-
tain, the ”consistency” will have a high variance.

To further validate the effectiveness of proposed frame-
work, we utilize ”1-consistency” [29] as an uncertainty
weight to evaluate the proposed framework. We conduct
experiments on CIFAR10 using the ResNet50 architecture,
achieving an ECE of 0.98 and an accuracy of 94.7%.

2https://huggingface.co/google/vit-base-patch16-224.

Loss CE FL BSCE-GRA
ECE 3.69 (2.26) 3.28 (2.51) 2.63 (1.61)

Table 8. ECE performance on ImageNet with ResNet50

17. Effectiveness on Large Scale Dataset
To thoroughly evaluate the effectiveness of the proposed
method, we fine-tune a ResNet-50 model, pretrained on
IN-1K and provided by PyTorch, for 90 epochs on the IN-
1K dataset. The fine-tuning process utilizes three different
loss functions: Cross Entropy (CE), Focal Loss (FL), and
our proposed BSCE-GRA. For optimization, we employ
the Adam optimizer, which effectively balances conver-
gence speed and stability. Additionally, we utilize a Cosine
Learning Rate Scheduler to adapt the learning rate through-
out training, promoting efficient convergence. The detailed
fine-tuning process follows standard practices to ensure fair
comparison among different loss functions. The perfor-
mance results, including accuracy and calibration metrics,
are summarized in Table 8. These results provide insight
into the robustness and adaptability of the proposed method
across diverse training settings.
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