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1. Ablation studies on ground removal
We followed the official Argoverse 2 benchmark and re-
moved the ground with rasterized maps in VoteFlow. Tab. I
now includes performance after ground removal using
Patchwork++ [1], an offline algorithm. Without maps, per-
formance drops notably, particularly on pedestrians (Pd.)
and wheeled VRUs (W.V). Compared to rasterized maps,
Patchwork++ achieves 95.5% precision and 82.3% recall
in ground classification. Cases without flat ground are not
well studied in current benchmarks, which remains an open
challenge.

Ground removal Mean Car O. V. Pd. W. V

Patchwork++ 0.369 0.246 0.364 0.477 0.389
Rasterized maps 0.335 0.222 0.347 0.424 0.347

Table I. Impact of ground removal on Argoverse 2 val split.

2. Ablation studies on the pillar size
Tab. II shows decreasing pillar size improves accuracy but
increases latency. Our default size 0.2m balances perfor-
mance and latency (on an A100 GPU).

Pillar (m) Latency (ms) Mean Car O.V. Pd. W. V.

0.1 58.6±6.5 0.327 0.216 0.360 0.403 0.331
0.2 25.6±5.2 0.335 0.222 0.347 0.424 0.347
0.4 17.1±4.6 0.371 0.226 0.369 0.524 0.366

Table II. Ablation study on pillar sizes on Argoverse 2 val split.

3. Ablation studies on loss functions
SeFlow [2] employs multiple losses to enforce consistent
flow predictions. For example, the cluster loss Lcluster en-
courages consistent flow prediction from the same cluster;
Lstatic directly forces the static flows to be zeros; Ldynamic

is explicitly imposed on points that are classified as dy-
namic in preprocessing. The usage of these losses shares
a purpose similar to our Voting Module, i.e., to make flow
prediction consistent. To evaluate the impact of our Vot-
ing Module in an isolated environment, we conduct abla-
tion studies where no additional losses are adopted other
than Lchamfer. Tab. III compares the performance of Se-
Flow and VoteFlow with Ltotal and Lchamfer alone (ex-
cluding Lcluster, Ldynamic, and Lstatic). Both models
show a significant performance drop when trained only with

Method Loss
Bucket Normalized EPE (↓)
Dynamic (normalized EPE)

Mean Car O. V. Pd. W. V

SeFlow [2] Ltotal 0.369 0.234 0.342 0.541 0.358
VoteFlow (Ours) Ltotal 0.335 0.222 0.347 0.424 0.347

SeFlow [2] Lchamfer 0.463 0.347 0.579 0.541 0.386
VoteFlow (Ours) Lchamfer 0.444 0.320 0.563 0.511 0.381

Table III. Impact of loss functions. All results are from Argoverse
2 val split. We test the performance of our model and the base-
line SeFlow [2], which have been trained by only Lchamfer . This
makes sure the model has not been regularized by any other loss
functions related to motion rigidity. The performance improve-
ment over SeFlow on Dynamic Mean indicates the benefit of the
Voting Module in our design.

Lchamfer, indicating the importance of the explicit loss as
regularization. However, VoteFlow still outperforms Se-
Flow across all categories, with a notable 2.1%pt improve-
ment in Dynamic Mean, demonstrating the effectiveness of
the Voting Module.

4. Ablation studies on the Voting Module and
voting features

Voting Voting Feats Mean Car O. V. Pd. W. V

✗ ✗ 0.373 0.222 0.397 0.512 0.362
✓ Fused feats G 0.348 0.220 0.383 0.445 0.344

✓ Pillar feats I 0.335 0.222 0.347 0.424 0.347

Table IV. Ablation study on the Voting Module and voting fea-
tures. Taking (separated) features from the Pillar Feature Net fur-
ther enhances performance over taking fused features from the U-
Net.

Tab. IV firstly compares models of the same architecture
without (✗) and with (✓) the Voting Module. Adding voting
improves the mean by 3.8%pt. Additionally, we explored
multiple configurations for the input features of our Voting
Module. In the first configuration, we use the separate pillar
indices Pt and Pt+∆t from the input point clouds to retrieve
per-point features from fused feature G. This design out-
performs its counterpart without the Voting Module by a
margin of 2.5%pt in Mean Dynamic, indicating G effec-
tively encodes the fused semantics from both point clouds.
An alternative design feeds the pseudo images It and It+∆t

directly into the Voting Module. In contrast to G, Is are sep-
arate pillar features for source and target point clouds. As
shown in Tab. IV, the second design achieves further perfor-



Figure 1. Failure cases on Argoverse 2 validation set. Colors indicate directions and saturation of the color indicates the scale of the flow
estimation. Both SeFlow and VoteFlow struggle to predict consistent flows for large-size, rigidly moving objects.

mance improvement over the first one. We therefore argue
that our proposed Voting Module is a universal method for
exploiting the motion rigidity prior regardless of which type
of features are used as input.

5. Additional Qualitative Results
We show a failure case of our model in Fig. 1 where it
fails to produce consistent flow for larger objects that move
rigidly. We suspect the failure originates from the fact
that the predefined local neighborhood where local rigidity
holds is not large enough to cover the entire object. Future
work could explore adjusting the neighborhood range adap-
tively for such cases.
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