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6. More Implementation Details
6.1. Network Architecture

Embedding layers. Given the LRHSI X and MSI Y , we
employ a 3 × 3 convolution as the Embedding layer. This
layer adjusts the channel dimension of the combined MSI
and LRHSI, yielding the initial feature representation.

F0 = femb(Concat(X,Y )), (11)

where femb(·) denotes the function of the Embedding layer.
Preliminary Fusion Module. Each SS2D block is pre-

ceded by a LayerNorm layer and includes a residual con-
nection. Let F represent the input, then the process can be
formulated as:

O = SS2D(LN(F )) + F, (12)

where O is the output of the block, and LN(·) represents
the LayerNorm layer. The state size in SS2D is set to 15.
Additionally, each downsampling operation is implemented
with two strided convolutions. The first layer reduces the
spatial dimensions by a factor of 4, using a 6 × 6 kernel
with a stride of 4. The second layer further reduces the
dimensions by a factor of 2, using a 4 × 4 kernel with a
stride of 2. Before each PixelShuffle (PS) operation, a 1×1
convolution is applied to upsample the channels.

Selective Re-learning Module. Based on the prelimi-
nary fusion feature Z ′, we uses a LayerNorm operation to
normalize Z ′. Next, we generate pseudo-MSI Y ′ using the
spatial response of the observation model. Finally, we cal-
culate the SSIM score for each feature point in the pseudo-
MSI:

Mspa = SSIMp(Y
′, Y ), (13)

where SSIMp(·) represents the calculation of the SSIM for
each feature point. We then select feature points with low
SSIM scores from Y +Y ′ based on the ratio r and feed them
into the Re-learning block. Both the Re-learning blocks for
spatial refinement and spectral refinement use the Spectral
Transformer structure, as shown in Fig. 10. Let VY Y ′ de-
note the input of Re-learning block. the process is formu-
lated as:

Vtemp = MSAspe(LN(VY Y ′)) + VY Y ′ ,

V = FFN(LN(Vtemp)) + Vtemp,
(14)

where MSAspe(·) represents the Spectral Multi-Self-
Attention block. FFN(·) consists of two 3 × 3 convolu-
tions and a ReLU activation function. Subsequently, by in-
troducing the residual of VY Y ′ , we obtain the result of spa-
tial re-learning, denoted as Z

′

spa. The re-learning process
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Figure 10. The architecture of the Re-learning Block. Spe-MSA
is the Spectral Multi-Self-Attention block.

for spectrally distorted feature points follows a similar ap-
proach, resulting in the spectral re-learning output Zspe. Fi-
nally, RF block fuses the spatial re-learning result and spec-
tral re-learning result as:

Z
′

spe up = PS(Z
′

spe),

ZSRL = fRF (Z
′

spe up, Z
′

spa),
(15)

where fRF (·) represents the RF block. ZSRL denotes the
output of the Selective Re-learning Module.

6.2. Implementation Details

We implement our method using PyTorch 1.13 and train it
on a single NVIDIA 3090 with an Intel i9-10920X CPU.
We adopt the Adam optimizer to train the network for 2000
epochs. The initial learning rate is set to 4e−4 and adjusted
using a cosine annealing strategy. The L1 loss is used as the
optimization objective.

6.3. Dataset Setup

For the CAVE and Harvard datasets, we evaluate the perfor-
mance of the method on the last 12 and 20 images, respec-
tively, while using the remaining images as training data.
We use the spectral response of the Nikon 700 to obtain the
MSI and an 8× 8 Gaussian blur kernel with a variance of 3
to obtain the LRHSI.

7. More Experiments

7.1. Proof for Overfitting Mitigation

As shown in Table 5, the training-testing loss gap without
the selective re-learning mechanism is 0.00235−0.00115 =
0.0012, which decreases to 0.00225 − 0.00119 = 0.00106
with it—a 11% reduction—achieving better PSNR. More-
over, our method has lower FLOPs and better performance
compared to other methods. We will add this analysis.



Table 5. Cross-dataset evaluation for deep learning-based meth-
ods.

Model Train Loss Test Loss Difference

W/O selection 0.00235 0.00115 0.00120
W/ selection 0.00225 0.00119 0.00106

Table 6. Cross-dataset evaluation for deep learning-based meth-
ods. The best result is marked in bold font.

Method PSNR SAM UIQI SSIM

DHIF-Net 45.7367 3.1949 0.8848 0.9829
DSPNet 45.8346 3.1725 0.8763 0.9819

MIMO-SST 46.2921 3.0410 0.8764 0.9825
Mog-DCN 45.3561 3.1216 0.8783 0.9818

LRTN 44.9675 3.2694 0.8699 0.9813
Ours 46.4822 2.9855 0.8816 0.9832

7.2. FLOPs Analysis

When calculating the FLOPs of the network, we primar-
ily calculate the FLOPs of convolutional layers, linear lay-
ers, and Mamba while ignoring the computation of the at-
tention matrix in the Transformer. The FLOPs of Mamba
are measured according to the method in the link https:
//github.com/state-spaces/mamba/issues/
110.

7.3. Cross-dataset evaluation

To further assess generalization capability, we conduct
cross-dataset evaluation. We evaluate the model trained on
CAVE using the Harvard dataset, as shown in Table 6. The
results demonstrate that the proposed approach achieves the
best performance across all metrics, showcasing superior
generalization capability.

7.4. More Visualization Results

We provide additional visual results of other test data from
the CAVE and Harvard datasets, as shown in Fig. 11 and
Fig. 12.

https://github.com/state-spaces/mamba/issues/110
https://github.com/state-spaces/mamba/issues/110
https://github.com/state-spaces/mamba/issues/110


(a) NSSR (b) Hysure (c) DHIF-Net (d) DSPNet

(e) MIMO-SST (f) Mog-DCN (g) LRTN (h) Ours
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Figure 11. The pseudo-color images and spectral angle error maps of reconstructed oil painting ms (a test image of the CAVE dataset) by
different methods.
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Figure 12. The pseudo-color images spectral angle error maps of reconstructed imgf1 (a test image of the Harvard dataset) by different
methods.
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