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A. Theoratical Investigation of Edge Consistency V.S. Full Consistency Distillation
As mentioned in the manuscript, the consistency model regularizes the consistency of estimated clean
samples as

Lc = ∥Fθ(Xt, t)−Fθ−(Xt−∆t, t−∆t)∥F . (S.1)

The original consistency models hypothesize that when the consistency training loss Lc decreases to 0,
the error of consistency function follows O((∆t)p). However, there is a critical issue that such hypnosis
is too ideal for large-scale model and dataset training processes. The original loss Lc cannot be optimized
to 0. Thus, there is an inevitable accumulated error, shifting the estimations of the consistency model
from the original data manifold.

To further take such optimization error into consideration, we assume that the error, e.g., the difference
between two step inference results, follows a uniform distribution, i.e., u = Fθ(Xt, t)−Fθ−(Xt−∆t, t−
∆t), and u ∼ U (0, δ), where δ is a quite small number.
Notions. We denote the consistency function of empirical PF ODE as FΦ(·, ·) with Φ as the parameters
of well-trained (ideal) diffusion model, which can be realized by the integral process. We then calculate
the error term ∥Fθ(xtn , tn)−FΦ(xtn , tn)∥F . We denote En as the error term with the timestamp tn.

En := Fθ(xtn , tn)−FΦ(xtn , tn). (S.2)

Moreover, for the term with timestamp tn+1 , we have

En+1 = Fθ(xtn+1 , tn+1)−FΦ(xtn+1 , tn+1);
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where 1⃝ is for the importance sampling of u, ∥E1∥F = 0 (the boundary condition) and Taylor expansion
of Fθ; in 2⃝, ∆t = max(tn+1−tn) is selected as the largest time interval. From the results, we can derive
that instead of the inherent Tylor high order residues O((∆t)p), there is further training residual error
term of N × E∥u∥F . Moreover, both of them are scaled by the number of intervals N , which indicates
the accuracy of consistency is negatively associated with the length of the interval we want to regularize,
i.e., the full consistency resulting in the largest potential error. Here we denote the aforementioned upper
error boundary Extn∼P(xtn )∥un∥F +O((∆t)p) by ∥Er∥F . We then have ∥En∥F ≤ n× ∥Er∥F .
Moreover, considering the distillation process, we feed the one-step generation result into the edge
consistency region via interpolating the latent at timestamp t as

xt|0,T = αtx0|T + σtϵ.

Since such one-step generation is coarse due to the error of the score function in the pure noise state,
note that such interpolation is a contraction mapping for our estimation term x0|T (αt ≤ 1). By assuming
the consistency function has L−Lipschitz continuity, we have

∥Fθ(x
∗
t , t)−Fθ(xt|0,T , t)∥F ≤ L∥x∗

t − xt|0,T∥F ,= Lαt∥x∗
0 − xt|0,T∥F ,

which indicates the error of our distillation target is positively associated with data ratio αt. However,
note that such errors are estimated over the trained consistency model parameterized by θ, whose error
is shown as ∥En∥F . Thus, taking both consistency model training error with inherent noised latent
interpolation error into consideration, we have

EA(x0|t) ≤ Lαt∥x∗
0 − xt|0,T∥F + n× ∥Er∥F ,

1⃝
= Lαt∥x∗

0 − xt|0,T∥F + t× ∥Er∥F ,

where 1⃝ is derived by setting the distillation step t to be the same as the largest edge consistency
training timestamp n. Then, it’s natural to derive a lower error upper bound as setting the t∗ to ensure
dαt

dt
|t=t∗ = −Lαt∥x∗

0−xt|0,T ∥F
∥Er∥F

. It indicates that we need to train and utilize the consistency in the region of
[t∗, 0], which is exactly the proposed edge consistency. Moreover, we utilize empirical experiments to
validate the choice of t∗, as shown in our ablation studies.

B. Details of the Adversarial Architecture
We extract the features from the last three layers of the diffusion model. The feature channels are
processed to attain a uniform channel value of 640, achieved through the use of a 1×1 convolution. Next,
average pooling is used to ensure consistent sizing across the features. The three layers of features are
then concatenated along the channel dimension and fed into the prediction head. Inspired by DMD [7],
the prediction head is composed of a series of 4x4 convolutions with a stride of 2, group normalization,
and SiLU activations. All feature maps are downscaled to a 4× 4 resolution, which is then followed by
a singular convolutional layer with a kernel size and stride of 4. This layer aggregates the feature maps
into a single vector, which is subsequently fed into a linear projection layer to predict the classification
score.



Figure 1. Illustration of the adversarial architecture, where we utilize the features from the last three layers of the
feature extractor (the features in the yellow box).

C. Implementation Details
The training phase of the Generative Adversarial Network (GAN) is unstable and susceptible to influence
from the initial phase. Hence, we warm up the single-step diffusion model using a typical distillation
framework to distill knowledge from the multi-step diffusion model to the single-step one, to avoid the
failure of single-step prediction. Specifically, the multi-step model executes inference in 6 steps and the
warm-up phase trains approximately 6,000 iterations.

D. More Visual Results
In this section, We present additional visual results generated by our accelerated model to further high-
light its capabilities and performance. These examples include a range of typical demonstrations for
Image-to-3D tasks, which are commonly used benchmarks in multi-view image diffusion models [2–4].
The results, shown in Figure 2, demonstrate the model’s ability to produce high-quality, multiview-
consistent 3D reconstructions with remarkable efficiency. Additionally, we present further outputs pro-
duced by the Text-to-Image (T2I) model, Flux [6], which are visualized in Figure 3. In the main pa-
per, we conducted a comprehensive evaluation of our accelerated model on the GSO [1] and DTC [5]
datasets, which are well-established benchmarks for assessing 3D generation tasks. To provide deeper
insights and reinforce the superior performance of our approach, we include additional visual results in
Figure 4 and Figure 5. These results further demonstrate the model’s ability to achieve high-quality,
multiview-consistent 3D reconstructions with significantly fewer inference steps, setting a new bench-
mark for diffusion-based 3D generation methods.

E. More Visual Results of Ablation Studies
In this section, we provide a detailed analysis of Table 3 from the main paper and present some intuitive
visualization results.

E.1. Risk of Mode Collapse

As shown in Fig. 6 (1) and (3), in the absence of distillation, adversarial learning is prone to mode
collapse, with all results skewing towards an unusual pattern. This is particularly evident with the
2nd and 3rd samples in (1). Fig. 6 (2) showcases the outcomes of fully guided score distillation. As
shown in 1st and 3rd samples in (2), fully guided distillation potentially amplifies the learning burden,
subsequently lowering generative performance.



Figure 2. The qualitative results generated by Acc3D on typical demonstrations in Image-to-3D. Acc3D is capable
of producing outstanding multi-view outputs in just two steps. ü Zoom in for details.



Figure 3. The qualitative results produced by Acc3D, utilizing less than four inference steps on a variety of image
styles generated by the Text-to-Image model Flux [6]. ü Zoom in for details.



Figure 4. The qualitative results on GSO dataset [1]. ü Zoom in for details.

Figure 5. The qualitative results on DTC dataset [5]. ü Zoom in for details.



Figure 6. Visualizations of some collapse under various experiment settings. All results are generated in two
steps. The results (1), (2), and (3) correspond to the experimental configurations (b), (c), and (e) outlined in Table
3 from the main paper, respectively.

E.2. Negative Effect of Single Discriminator

As depicted in Fig. 7, the fusing of these two modalities adversely affect the discriminator/model’s
performance, shown obviously for the normal maps of 2nd and 3rd samples. Independent learning of
different modalities in the discriminator can enhance the stability of adversarial learning and result in
superior quantitative outcomes.

Figure 7. Visualizations of single discriminator processing both colors and normal maps simultaneously.

F. Comparison with Base Model Era3D
We visualize the results of our method and the base model Era3D in Fig. 8. Our method produces clearer
and visually superior results at the same resolution (512), demonstrating finer details and better struc-
tural consistency. Additionally, our approach requires significantly fewer steps to achieve high-quality
novel view synthesis, making it more efficient while maintaining superior visual fidelity. This highlights
the effectiveness of our framework in generating high-resolution, high-quality 3D-aware images with
reduced computational cost.

G. Diversity of Sampling
Diversity is an important evaluation indicator for single image-to-3D model. Our model demonstrates
the capability to produce an array of superior-quality examples, as depicted in Fig 9. In Table 1, we
present the variance observed in multiple samplings relative to the direct regression from the real images.
Directly mapping the diffusion model’s outputs with real images results in a diminished diversity.



Figure 8. Visual comparisons with baseline model Era3D.

Table 1. Variance comparisons with the regression strategy on sampling diversity. “Regression” signifies the
direct regression of the diffusion model’s outputs with real images.

Camera1 Camera2 Pencilcase Lunchbox1 Lunchbox1 Average Variance ↑
Ours 1662.66 399.56 902.21 618.93 1281.10 972.89

Regression 342.09 125.43 211.42 91.71 147.02 183.53

Figure 9. Diversity in the synthesis of novel views under different seeds. The diverse results highlight a broad
range of diversity, capturing both the geometrical and visual characteristics that are not present in the input view.
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