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Appendix

In the supplementary materials, we first discuss the limi-
tations of our proposed method (Sec. A). Following that,
we explore another 4D representation, providing a detailed
analysis of the parametric triplane (Sec. B).We then ex-
plored different model architectures to validate the superi-
ority of our DIT + render approach. We provide additional
implementation details, including the domains used during
training, the specific training procedures for each model,
and other relevant training configurations (Sec. D). We
provide additional comparisons and visual results to further
demonstrate the effectiveness of our method (Sec. E). Last
but not least, we present more results in the supplementary
video.

A. Limitations

While our method can handle inputs from various domains
and generate high-fidelity avatars, it does not adequately
separate the head region from the background, nor does it
decouple neck rotation from the camera pose, which limits
the realism of the final results. The 4D representation we
employ uses a mesh as the primary driving signal. Although
we incorporate motion embeddings as a supplementary
motion signal, the process of obtaining the mesh is both
time-consuming and imprecise, which adversely affects the
overall efficiency and accuracy of the avatar generation.

B. Exploration of the 4D Representation

In Portrait4D [4], a 4D GAN (GenHead) based on a
deformation field representation [9] achieved impressive
generative results. Specifically, the GenHead G consists
of a part-wise triplane generator Gca for synthesizing the
canonical triplane and a part-wise deformation field D for
morphing the canonical head. It generates the 3D deforma-
tion field based on FLAME [8] expression coefficients and
synthesizes the canonical triplane using the shape parameter
from FLAME. During inference, the canonical triplane can
be driven by applying the deformation field to compute the
offset for each point in the triplane with the corresponding
Flame parameters.

This canonical tri-plane and deformation field can also
form a type of 4D representation. However, it is not suitable
for our task. First, the deformation field changes accord-
ing to different facial expressions, making it an unstable
representation. In contrast, our representation only varies
based on the subject’s identity, ensuring consistency across
different expressions for the same individual. Additionally,
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Figure S1. Visualization of generation results of different 4D
GANs, including Next3D [11] and GenHead [4], on the unrealistic
domain. We use the domain of Lego here. GenHead tends to
produce artifacts, whereas Next3D achieves much better results,
generating more plausible content.

Figure S2. Visualization of different model results. Model A and
Model B are two different end-to-end method which not use the
Dit. For more details, please refer the Sec. C.

we found that GenHead does not perform well in open-
domain generation. We suspect that this representation
requires highly precise canonical space modeling, which
is particularly challenging for non-realistic domains. In
contrast, NeTX3D’s representation focuses more on mo-
tion modeling while delegating identity preservation to a
separate CNN. Compared to GenHead, this representation
is more implicit and better suited for generating characters
across different domains. (See Figure S1).



C. Effectiveness of model design

To demonstrate the clear effectiveness of using a DiT
model for triplane generation, we conduct experiments
comparing it with two feedforward approaches, as illus-
trated in Fig. S2. Model A, similar to Portrait4D, uses
only 4D RGB data, preserving identity well but struggling
with motion transfer due to the absence of a unified 4D
representation and limitations of cross-attention for cross-
domain motion retargeting. Model B, which operates
without cross-attention, uses an encoder-decoder to convert
input images into parametric triplanes and a ViT decoder
to refine animated features. While effective at transferring
expressions, the encoder-decoder based feedforward model
fails to reconstruct accurate triplanes, leading to identity
loss and making it more challenging for the ViT decoder
to bridge the identity gap. In contrast, similar to VASA-
1 [13], our diffusion + renderer pipeline leverages the target
parametric triplanes fitting ability of a powerful generative
model. This enables our method to simultaneously maintain
both motion and identity, achieving the highest quality
results.

D. More implementation details

D.1. Training Domains

As mentioned in our main paper, we used 28 domain images
during training, including the original realistic domain. We
categorize our domains into two types. The first type
uses the official Stable Diffusion 2.1 model [10] as the
generative model. For this type, the text prompts used are
shown in Table S1, and we generate images in 20 different
domain styles, with 6,000 images per domain. The second
type, as shown in Table S2, utilizes third-party models in
Civitai [1] as the generative models, where each model
corresponds to a specific style. For these models, the same
text prompt is used across all models, and we set the prompt
as ”masterpieces, portrait, high-quality”.

D.2. 4D GAN

The 4D GANs (Next3D) for different domains were fine-
tuned from the original FFHQ GAN. Similar to DATID-
3D [7], the training was stopped once the GAN had seen
200,000 images. We set the batch size to 32 and used
8 A100 GPUs to fine-tune the model for 2 hours. A
learning rate of 0.002 was used for both the generator and
discriminator. For the discriminator’s input, we applied
image blurring, progressively reducing the blur degree as
described in [2, 6], and we did not employ style mixing
during training. We used the ADA loss combined with R1
regularization, with the regularization coefficient set to λ =
5. Additionally, the strength of the density regularization
was set to λden = 0.25.

D.3. VAE
We follow the LVDM [5] and use a lightweight 3D au-
toencoder as our VAE. This VAE consists of an encoder E
and a decoder D. Both the encoder and decoder comprise
multiple layers of 3D convolutions. During training, we
render the parametric triplane to obtain both depth maps
and rendered images, and compute the L1 and LPIPS losses
separately. We also add a KL divergence loss to ensure that
the latent feature distribution is similar to the Gaussian prior
p(h) = N (0, 1). The weight of L1 loss in triplane and
depth is 1, the weight of LPIPS loss in the image is 1, and
the weight of KL loss is 1 × 10−5. We randomly sample
camera poses during rendering, with the sampling ranges
set to pitch in [−0.25, 0.65] radians, yaw in [−0.78, 0.78]
radians, and roll in [−0.25, 0.25] radians. The visual results
of our VAE are shown in Figure S3.

D.4. DiT
The VAE compresses the triplane into zt ∈ R64×64×4×8.
The DiT reshapes zt to 64 × 256 × 8, adds positional
embeddings, and then flattens it before feeding it into
the Transformer for training. Following the approach in
Direct3D [12], at each DiT block, we concatenate DINO
tokens with the flattened zt and pass them through a self-
attention mechanism to capture the intrinsic relationships
between the DINO tokens and zt. Afterward, we dis-
card the image tokens, retaining only the noisy tokens
for input to the next module. Moreover, to reduce the
number of parameters and computational cost, we adopt
adaLN-single, as introduced in PixArt [3]. This method
predicts a set of global shift and scale parameters P =
[γ1, β1, α1, γ2, β2, α2] using time embeddings. A trainable
embedding is then added to P in each block for further
adjustment. During training, the batch size is set to 1536,
and the training is conducted over 48 Tesla A100 GPUs
(batch size 32 for each GPU), each with 80GB of memory,
for a total of 5 days.

D.5. Motion-Aware Cross-Domain Renderer
During the Next3D rendering process in Figure. S4, a CNN
is used to refine the dynamic components after rasterization,
eliminating artifacts introduced in the rasterization stage
(e.g., teeth completion, identity leakage). When training
Next3D for different domains, we fine-tune this CNN,
as well as the MLPs used in both super-resolution and
neural rendering. Therefore, a unified renderer is required
to handle parametric triplanes from various domains and
mitigate issues caused by rasterization.

As mentioned in our main paper, we find a simple CNN
can not handle the cross-domain parametric triplanes, and
we propose the motion-aware cross-domain renderer. To
train the motion-aware cross-domain renderer, we use the
trained 4DGAN to generate the 4D images (i.e., multi-



Table S1. List of full-text prompts corresponding to each domain. The images for these domains were generated using SD-V1.5 as the
base model, in combination with corresponding prompts.

Concise Name of Domain Full text prompt
Pixar a 3D render of a face in Pixar style
Lego a 3D render of a head of a lego man 3D model
Greek statue a FHD photo of a white Greek statue
Elf a FHD photo of a face of a beautiful elf with silver hair in live action movie
Zombie a FHD photo of a face of a zombie
Tekken a 3D render of a Tekken game character
Devil a FHD photo of a face of a devil in fantasy movie
Steampunk Steampunk style portrait, mechanical, brass and copper tones
Mario a 3D render of a face of Super Mario
Orc a FHD photo of a face of an orc in fantasy movie
Masque a FHD photo of a face of a person in masquerad
Skeleton a FHD photo of a face of a skeleton in fantasy movie
Peking Opera a FHD photo of face of character in Peking opera with heavy make-up
Yoda a FHD photo of a face of Yoda in Star Wars
Hobbit a FHD photo of a face of Hobbit in Lord of the Rings
Stained glass Stained glass style, portrait, beautiful, translucent
Graffiti Graffiti style portrait, street art, vibrant, urban, detailed, tag
Pixel-art pixel art style portrait, low res, blocky, pixel art style
Retro Retro game art style portrait, vibrant colors
Ink a portrait in ink style, black and white image

Table S2. List of models used for each domain. The images for these domains were generated using specific models as base models. All
models were sourced from Civitai [1], an AI-Generated Content (AIGC) social platform.

Concise Name of Domain Model Name
3D-Animation 3D Animation Diffusion-V1.0
Toon ToonYou-Beta6
AAM AAM Anime Mix
Counterfeit Counterfeit-V3.0
Pencil Pencil Sketch
Lyriel Lyriel-V1.6
XXM XXMix9realistic

view, multi-expression images of the same individual), and
we are able to simultaneously obtain the corresponding
depth, parametric triplane, and rendering features. The
data is separated into static and dynamic parts similar to
Portrait4D [4], as mentioned in our main paper. The overall
training objective of our renderer is defined as follows:

L = Lre + Lf + Ltri + Ldepth + Lopa + Ladv, (S1)

where Lre represents a combination of the LPIPS and L1

distances between the generated image Io and its corre-
sponding ground truth. Ltri measures the L1 difference
between the generated triplane features and their ground
truth. Lf computes the L1 difference between the generated
rendering features and their respective ground truth. Ldepth
evaluates the L1 difference between the generated depth

map and its ground truth counterpart. Lopa is the L1

difference between the predicted opacity and the ground
truth. Finally, Ladv represents the adversarial loss between
Io and the ground truth image, utilizing the discriminator
from the Next3D model.

The loss balancing weights for each term in Eq. (S1)
are set to 1, 1, 0.1, 1, 1, and 0.01 for Lre, Lf, Ltri, Ldepth,
Lopa, and Ladv, respectively. For the first 1000K images,
Ladv is not applied, and the parameters in both the neural
renderer and super-resolution components are kept fixed.
After 1000K images, Ladv is introduced, and the trainable
parameters of the neural renderer and super-resolution
modules are unfrozen. We employ volume rendering with
48 coarse samples and 48 fine samples per ray. The initial
volume rendering resolution is set to 642 for the first 1000K



Ground Truth Results of VAE

Figure S3. Visualization of reconstruction results of our VAE. The domain is Yoda, 3D-Animation, Zommbie, and Counterfeit, respectively.
The ground truth images are generated with the Next3D.

images, gradually increasing to 1282 as training progresses.
The model is trained on a total of 8 million images. We
utilize the Adam optimizer with (β1, β2) = (0.9, 0.999)
and a learning rate of 1 × 10−4 across all networks. The
batch size is set to 96, with an even split between dynamic
and static data. The training is conducted over 24 Tesla
A100 GPUs, each with 80GB of memory, for a total of 4
days.

E. Additional Comparisons and Visual Results
E.1. User Study
For a more comprehensive evaluation, we conducted a user
study with 10 participants, who were asked to assess image
sharpness, temporal consistency, expression consistency,
and identity consistency. They did so by selecting the best
method while reviewing 12 cross-ID reenactment results
generated by different approaches.

For each evaluation criterion, participants were pre-

Model Trained Domains / Untrained Domains

Sharpness Temporal Expression Identity

LivePortrait 3.625 / 2.5 3.625 / 2.5 3.5 / 1.5 3.5 / 1.5
Xportrait 2.375 / 1 1.625 / 1 2 / 1 1.875 / 1.5
Invertavatar 2.625 / 2.5 2.25 / 2.5 2.375 / 2 2.75 / 2.5
Portrait4D 1.875 / 3.5 2.5 / 3 2.125 / 2.5 2.375 / 2

Ours 4.625 / 5 4.25 / 5 4.375 / 4.5 4.125 / 5

Table S3. User Study.

sented with five videos, each corresponding to the results
produced by a different method. They were instructed to
rate the videos on a scale from 1 to 5, where 5 indicates the
highest quality and 1 the lowest. Multiple methods could
receive the same score. As shown in Table S3, our method
exhibits significant advantages over the others.
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Figure S4. Visualization of rendering process of Next3D. After
rasterization, a CNN is employed to remove artifacts introduced
during the rasterization process, which is critical for final perfor-
mance, as mentioned in the Next3D [11].

E.2. Visual Comparisons
In Figure S6, we present additional visual comparisons,
demonstrating that our method achieves superior perfor-
mance. Moreover, we present our geometric results in
Figure S5. For more visual results, please refer to our video
results.
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Figure S5. The geometry results of our method.
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Figure S6. Qualitative comparison with state-of-the-art methods. The leftmost column of the figure presents the input images, with the
bottom-right corner indicating the target image. The first row illustrates the results of self-reenactment, while the subsequent rows showcase
the results of cross-reenactment. Our method demonstrates superior performance in terms of expression and pose consistency, as well as
identity preservation. For more visual results, please refer to our video results.


