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Supplementary Material

Table A. Ablation Study on the subgroup size gs. PSNR and SSIM
are calculated with a scale factor of 4. All models are trained 250K
on DIV2K [6] from scratch.

gs
Set5 Urban100

PSNR SSIM PSNR SSIM
64 32.43 0.8984 26.67 0.8027
128 32.46 0.8985 26.68 0.8025
256 32.51 0.8989 26.68 0.8030

CATA (Ours) 32.54 0.8990 26.70 0.8033

Figure A. Performance and model inference speed comparison on
Set5 dataset for upscaling factor ×4. The test output image size is
3× 1024× 1024.

The supplementary material is organized as follows. In
Sec. A, we provide the implementation details of CATANet.
In Sec. B, we conduct more ablation studies on the Token
Aggregation Block (TAB) of CATANet and Sec. C pro-
vide further analysis to investigate the advantages of our
method. Finally, in Sec. D, we present more illustrations of
the CATA module and visual examples.

A. Implementation Details

Network hyperparameters. We set the number of
Residual Groups K=8, each containing one TAB and one
LRSA. For LRSA, the overlapping patch size is set to [16,
20, 24, 28, 16, 20, 24, 28]. For TAB, inspired by the pro-
gressive size setting of overlapping patches in LRSA, the
number of token centers M and subgroup sizes gs are set to
[16,32,64,128,16,32,64,128],[256,128,64,32,256,128,64,32],
respectively. The channel dimension, number of attention
heads, and MLP hidden layer dimension of CATANet are
set to 40, 4, and 96, respectively. The number of iterations
for updating the token centers in each TAB module is set to
5.

Training Details. We train the model with a batch size
of 64, where each input image is randomly cropped to a
size of 64 × 64. During the training phase, we applied
common data augmentation techniques, including random
rotation and horizontal flipping. Following previous work
[3, 10], we employ the Adam optimizer [4] with β1 = 0.9
and β2 = 0.99 to minimize the L1 loss. For the case of ×2
zooming factor, we train the model from scratch for 800k
iterations. The initial learning rate is set to 2× 10−4, and is
halved at milestones [300K, 500K, 650K, 700K, 750K]. For
the ×3 and ×4 models, we fine-tuned the well-trained ×2
model for a total of 250K iterations. The initial learning
rate is also set to 2 × 10−4, and is halved at milestones
[125K, 200K, 225K, 237.5K].We use PyTorch [5] to imple-
ment our models with 4 Tesla V100 GPUs.

B. More Ablation Studies

Effects of subgroup size gs. In window attention, a larger
window size can provide a larger receptive field, which in
turn leads to improved performance. We conduct exper-
iments to explore the influence of varying the subgroup
size gs from 64 to 256 on TAB, as shown in Tab. A. The
model performance gradually improves as gs increases to
256. However, compared to our progressive gs setting strat-
egy, a fixed gs of 256 shows inferior performance. This
is because our progressive strategy flexibly assigns differ-
ent gs to different TAB modules, resulting more effective
information capture over different scales. In addition, our
progressive gs strategy results in a faster inference speed
compared to setting gs of all TABs to 256, as illustrated in
Fig. A.

Effects of Global Token Centers. In Tab. B, we perform
an ablation study regarding whether to learn token centers
from each image, and our method achieves better perfor-
mance. This is because learning the token center for each
image separately may lead to drastic changes in the token
center during training, and such drastic changes increase the
learning difficulty of the model. We use EMA to ensure that
the token center will not change drastically to ensure the
stability and consistency of model learning. This method is
also similar to updating the mean and variance using EMA
in BatchNorm. This also makes our model does’t need to
re-learn the token center in inference, improving inference
speed.



Table B. Ablation Study on different types of token centers.

Token Centers Params Multi-Adds Set5 Set14 B100 Urban100 Manga109

Individual 536K 46.8G 32.49 28.75 27.76 26.84 31.27
Global (Ours) 536K 46.8G 32.58 28.90 27.75 26.87 31.31

Table C. Ablation Study on LRSA module.

LRSA Params Multi-Adds Set5 Set14 B100 Urban100 Manga109

403K 37.1G 32.26 28.69 27.62 26.36 30.75
536K 46.8G 32.58 28.90 27.75 26.87 31.31

Effects of LRSA. In Tab. C, we conducted an ablation
study on the LSRA module. As shown, local attention also
plays a key role in the image SR task, which provides fine
local information modeling.

C. Further Analyses

C.1. LAM analyses
In this section, we show more LAM [2] analysis with
the state-of-the-art lightweight SR methods, including
RCAN [9], SwinIR-light [3] and SRFormer-light [10].
LAM can show the pixels that contribute the most to the
reconstruction of a selected region, and the corresponding
pixels are marked in red. More marked pixels mean that
the model can use more information and achieve better per-
formance. As shown in Fig. B, our CATANet has the most
labeled pixels. It indicates that our CATANet has larger re-
ceptive fields and utilizes more information to restore im-
age. This is because our method can efficiently aggregate
more non-localized pixels via Token Aggregation Block.

C.2. Perceptual Similarity Analyses
The paper [1] reveals that the superiority of PSNR values
does not always accord with better visual quality. To fur-
ther evaluate our method, we introduce metric LPIPS [8].
Compared to PSNR, LPIPS is more alignable with human
perception. As shown in Tab. D, our CATANet achieves the
best performance (lowest value) on all datasets. This result
demonstrates the superiority of our method.

D. More Visual Examples

D.1. Qualitative Comparison
In this section, we show some visual examples of different
methods under scaling factor ×4,1 as shown in Fig. C and
Fig. D2. These images clearly demonstrate our advantage

1No Comparison with SPIN Due to Lack of Pretrained Weights and
Test Results.

2CRAN Did Not Provide Pretrained Weights and Manga109 Test Re-
sults.

in recovering sharp edges and clean textures from severely
degraded LR input.

D.2. CATA Visualization
In this section, we provide more examples of visualizations
from Content-Aware Token Aggregation (CATA) module.
We visualize only a few groups for each input image for
simplicity. As shown in Fig. E and Fig. F, these token
grouping results indicate that our CATA module is capable
of grouping multiple tokens based on their content similar-
ity.



Table D. Comparison (LPIPS) with the state-of-the-art methods for image SR. Best and second best results are colored with red and blue.

Method Scale Params Set5 Set14 B100 Urban100 Manga109
SwinIR-light [3] ×2 878K 0.0865 0.1368 0.1561 0.1065 0.0505
SRFormer-light [10] ×2 853K 0.0859 0.1361 0.1555 0.1050 0.0496
OmniSR [7] ×2 785K 0.0900 0.1381 0.1581 0.1082 0.0526
CATANet (Ours) ×2 477K 0.0843 0.1360 0.1545 0.1036 0.0493
SwinIR-light [3] ×3 886K 0.1589 0.2339 0.2681 0.2045 0.1116
SRFormer-light [10] ×3 861K 0.1576 0.2322 0.2655 0.2022 0.1107
OmniSR [7] ×3 793K 0.1612 0.2340 0.2688 0.2048 0.1136
CATANet (Ours) ×3 550K 0.1560 0.2304 0.2649 0.1991 0.1085
SwinIR-light [3] ×4 897K 0.2071 0.3002 0.3459 0.2786 0.1633
SRFormer-light [10] ×4 873K 0.2063 0.3000 0.3439 0.2747 0.1615
OmniSR [7] ×4 805K 0.2136 0.3017 0.3484 0.2783 0.1654
CATANet (Ours) ×4 477K 0.2048 0.2973 0.3418 0.2683 0.1602
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Figure B. LAM Comparison: RCAN [9], SwinIR-light [3], SRFormer-light [10] and CATANet (Ours) for ×4 SR.



Urban100: img 053 (×4)

HQ Bicubic A-CubeNet (16.16/0.5097) CARN (16.04/0.4706)

IMDN (16.43/0.4997) ESRT (17.15/0.5816) SwinIR-light (17.70/0.6191) Ours (19.83/0.7840)

Urban100: img 024 (×4)

HQ Bicubic A-CubeNet (13.81/0.3317) CARN (18.54/0.3619) (13.20/0.2229)

IMDN (13.39/0.2497) ESRT (15.01/0.4542) SwinIR-light (13.62/0.3488) Ours (15.14/0.5087)

Urban100: img 020 (×4)

HQ Bicubic A-CubeNet (19.81/0.7620) CARN (18.67/0.7078)

IMDN (18.56/0.7100) ESRT (20.84/0.7921) SwinIR-light (21.82/0.8316) Ours (22.01/0.8428)

Urban100: img 030 (×4)

HQ Bicubic A-CubeNet (20.03/0.5157) CARN (20.10/0.5157)

IMDN (19.68/0.5190) ESRT (19.90/0.4972) SwinIR-light (20.38/0.5422) Ours (20.86/0.5811)

Figure C. Visual comparisons of CATANet and other state-of-the-art lightweight SR methods. Metrics (PSNR/SSIM) are calculated on
each patch. Best and second best results are colored with red and blue, respectively.



Manga109: MomoyamaHai (×4)

HQ Bicubic A-CubeNet (17.85/0.3982)

IMDN (17.97/0.4283) ESRT (18.17/0.4432) SwinIR-light (17.74/0.3896) Ours (18.32/0.4880)

Manga109: DollGun (×4)

HQ Bicubic A-CubeNet (16.26/0.3120)

IMDN (16.26/0.3192) ESRT (16.43/0.3309) SwinIR-light (16.92/0.3770) Ours (17.51/0.4554)

Manga109: YumeiroCooking (×4)

HQ Bicubic A-CubeNet (20.12/0.4956)

IMDN (19.70/0.4382) ESRT (20.12/0.4886) SwinIR-light (20.40/0.5430) Ours (21.12/0.6306)

Figure D. Visual comparisons of CATANet and other state-of-the-art lightweight SR methods. Metrics (PSNR/SSIM) are calculated on
each patch. Best and second best results are colored with red and blue, respectively.

Figure E. Visualization of token grouping examples on Urban100. The white area in each binarized image denotes a single group.



Figure F. Visualization of token grouping examples on Manga109. The white area in each binarized image denotes a single group.
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