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A. Cross-dataset Evaluation

To examine the data quality of CORE4D-Real, we fol-
low existing dataset efforts [2, 10, 25] and conduct the
vision-based cross-dataset evaluation. We select an indi-
vidual human-object-interaction dataset BEHAVE [1] that
includes color images and select 2D human keypoint esti-
mation as the evaluation task.

Data Preparation. For a color image from CORE4D-
Real and BEHAVE [1], we first detect the bounding box
for each person via ground truth human pose and obtain the
image patch for the person. We then resize the image patch
to get a maximal length of 256 pixels and fill it up into a
256x256 image with the black color as the background. Fi-
nally, for each 256x256 image, we automatically acquire
the ground truth 2D-pixel coordinates of 22 SMPL-X [15]
human body joints from 3D human poses. For data split,
we follow the original train-test split for BEHAVE [1] and
merge the two test sets (S1, S2) for CORE4D-Real.

Task Formulation. Given a 256x256 color image in-
cluding a person, the task is to estimate the 2D-pixel coor-
dinate for each of the 22 SMPL-X [15] human body joints.

Evaluation Metrics. P, denotes the mean-square error
of 2D coordinate estimates. Acc denotes the percentage of
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the coordinate estimates with the Euclidean distance to the
ground truth smaller than 15 pixels.

Method, Results, and Analysis. We draw inspiration
from HybrIK-X [8] and adopt their vision backbone as the
solution. Table 1 shows the method performances on the
two datasets under different training settings. Due to the
significant domain gaps in visual patterns and human be-
haviors, transferring models trained on one dataset to the
other would consistently encounter error increases. De-
spite the domain gaps, integrally training on both datasets
achieves large performance gains on both CORE4D-Real
and BEHAVE [1], indicating the accuracy of CORE4D-
Real and the value of the dataset serving for visual percep-
tion studies.

Train CORE4D-Real

Test CORE4D-Real | BEHAVE [1] +BEHAVE [1]
CORE4D-Real 152.4/91.2 904.9/35.6 121.7/92.4
BEHAVE] 1] 887.9/37.8 146.3 / 88.9 128.2/89.8

Table 1. Cross-dataset evaluation with BEHAVE [1] on 2D hu-
man keypoint estimation. Results are in P, (pixel?, lower is bet-
ter) and Acc (%, higher is better), respectively.

B. Details on Real-world Data Aquisition

In this section, we describe our system calibration (Sec-
tion B.1) and time synchronization (Section B.2) in detail.
Moreover, we provide detailed information on loss func-
tions of the human mesh acquisition (Section B.3).

B.1. System Calibration

Calibrating the Inertial-optical Mocap System. Three
reflective markers are fixed at known positions on a calibra-
tion rod, by which the 12 high-speed motion capture cam-
eras calculate their relative extrinsic parameters, providing
information about their spatial relationships. Additionally,
three markers fixed at the world coordinate origin are em-
ployed to calibrate the motion capture system coordinate



with the defined world coordinate.

Calibrating Camera Intrinsic. The intrinsic parame-
ters of allocentric and egocentric cameras are calibrated us-
ing a chessboard pattern.

Calibrating Extrinsic of the Allocentric Cameras. We
place ten markers in the camera view to locate each allo-
centric camera. By annotating the markers’ 3D positions in
the world coordinate system and their 2D-pixel coordinates
on allocentric images, the camera’s extrinsic parameters are
estimated by solving a Perspective-n-Point (PnP) problem
via OpenCV.

Calibrating Extrinsic of the Egocentric Camera. We
obtain the camera’s pose information by fixing the camera
to the head tracker of the motion capture suit. Similarly, ten
markers are used to calibrate the relative extrinsic param-
eters of the first-person perspective cameras, allowing for
determining their positions and orientations relative to the
motion capture system. Additionally, to mitigate errors in-
troduced by the integration of optical and inertial tracking
systems, a purely optical tracking rigid is mounted on the
motion camera.

B.2. Time Synchronization

To implement our synchronization method, we first set
up a Network Time Protocol (NTP) server on the motion
capture host. This server serves as the time synchroniza-
tion reference for the Windows computer connected to the
Kinect Azure DK. We minimize time discrepancies by con-
necting the Windows computer to the NTP server in high-
precision mode and thus achieving precise synchronization.

Additionally, we employ a Linear Timecode (LTC) gen-
erator to encode a time signal onto the action camera’s audio
track. This time signal serves as a synchronization reference
for aligning the first-person perspective RGB information
with the motion capture data.

B.3. Loss Function Designs for Human Mesh Ac-
quisition

To transfer the BVH [13] human skeleton to the widely-
used SMPL-X [15] model. We first estimate the body
shape parameters 3 € R!Y that minimize £(8) =
Abone Lbone + )\shapejeg»cshapejeg, where Lyone = Z(Bz -
B;(8))? computes differences between the measured hu-
man bone lengths (B;) and those decided by 3 (B;(/3)). The
utilized bones (z) involve the upper and lower arms, upper
and lower legs, and the overall human height. The regular-
izer Lohaperes = || 8 |? prevents large values in 3.

Given f3, we then optimize the full-body pose € R'%9
with the following loss function:

is defined as

£reg = Z ||9bodyH2 . )\body + (Z HeulandH2 + Z HermandHQ) : /\hand7
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where Gpoay € R?*'*? represents the body pose parameters
defined by 21 joints of the skeleton, 6; j4nq € R!2 and
O handa € R? represents the hand pose parameters. For
each hand, the original SMPL-X skeleton has 15 joints with
parameters Oy € R1°%3. However, principal component
analysis (PCA) is applied to the hand pose parameters. The
Onana parameters are transformed into a lower-dimensional
space, specifically R!2, Abody = 1073 and Apgpg = 1074
are different weights that are used to control the regular-
ization strength for the body and hand pose parameters, re-
spectively. This loss ensures the simplicity of the results
and prevents unnatural, significant twisting of the joints.

3D Position Loss £;3p and L;3p. The 3D position loss
term is defined as

Lap =Y _ [[Tampix — Town|[* - Aap, 3)

where Tynpix € R3 represents the 3D global coordinates of
the joints in the SMPL-X model and Ty, € R3 represents
the corresponding 3D global coordinates of the joints in the
BVH representation. £;3p represents the 3D position loss
sum for the 21 body joints, while Lj3p represents the 3D
position loss sum for the 30 hand joints (15 joints per hand).
These two terms have different weights, set as Aj3p = 1.0
and Ap3p = 2.0, respectively.

Orientation Loss £ori and L0ri. The orientation loss
term is defined as

EOri == Z HRsmp]x - I{bvhH2 ‘ AOria (4)

which is similar to L3p, except that Rempix € R3*%3 and
R € R3*3 represent the rotation matrices for the ad-
jacent joints in the SMPL-X and corresponding BVH rep-
resentations, respectively. Specifically, body joints named
head, spine, spine2, leftUpLeg, rightUpLeg, rightShoulder,
leftShoulder, rightArm, leftArm, and neck are subjected to
orientation loss, ensuring that their rotations relative to ad-
jacent nodes are close to the BVH ground truth. Aoy is set
to 0.2.

Temporal Smoothness Loss Lqmooth-
smoothness loss term is defined as

The temporal

N
Esmoolh = Z (Hez - 9i—1||2) . )\smooth (5)
i=1
where 6; € R(130)%3 represents the body and hand pose
of the i-th frame. Agmoom 1S set to 20.0.
Contact Loss Lcontact- The contact loss term is defined

‘C(a) = ‘Creg + »Cj3D + £j0ri + Esmooth + £h3D + »ChOri + ﬁcontactas

(1

Regularization Loss L,.;. The regularization loss term

Econtact = Z <| |Tﬁnger - Tobj ‘ |2 : J(Tﬁngera Tobj)) : )\contacl
(6)



where Tpnger € R0%3 is the global coordinates of ten fin-
gers, and Top; € R'9*3 s the corresponding global coordi-
nates of the point closest to finger. J (Tﬁnger, Tobj) is 1 when
the distance between Tenger and Top; is less than a threshold,
otherwise it is 0. And Acongace 18 2.0.

C. Details on CORE4D-Synthetic Data Gener-
ation

In this section, we provide details on our synthetic data
generation (collaboration retargeting) method. Firstly, we
clarify term definitions in Section C.1. We then explicitly
introduce the whole method pipeline in detail in Section
C.2. Finally, we provide implementation details in Sections
C.3 and C.4.

C.1. Term Definitions

We provide definitions for the terms in our collaboration
retargeting pipeline as follows.

Contact Candidate: Contact candidate is a quadru-
ple list containing all possible contact region index (per-
sonl _leftHand, personl_rightHand, person2_leftHand, per-
son2_rightHand) on source’s vertices. For each source, we
record the contact regions of the four hands in each frame of
each data sequence. At the beginning of the synthetic data
generation pipeline, we sample contact candidates from
these records.

Contact Constraint: Having contact candidate on
source, we apply DeepSDF-based [14] contact retargeting
to transfer the contact regions to target. These contact
regions on farget are the contact constraints fed into the
contact-guided interaction retargeting module.

Source Interaction: During each collaboration retarget-
ing process, we sample a human-object-human collabora-
tive motion sequence from CORE4D-Real as the source in-
teraction to guide temporal collaboration pattern.

Interaction Candidate: Sampling N contact candi-
dates, we apply contact-guided interaction retargeting N
times and have N human-object-human motion outputs,
dubbed interaction candidates. These motions would be fed
into the human-centric contact selection module to assess
their naturalness.

C.2. Method Pipeline

The algorithm takes a source-target pair as input. First,
we sample contact candidates from the whole CORE4D-
Real contact knowledge on source. For each contact candi-
date, we apply object-centric contact retargeting to prop-
agate contact candidates to contact constraints on farget.
Sampling motion from CORE4D-Real provides a high-
level temporal collaboration pattern, and together with aug-
mented low-level spatial relations, we obtain interaction
candidates from the contact-guided interaction retargeting.

Then, the human-centric contact selection module selects
the optimal candidates, prompting a contact constraint up-
date. After multiple iterations, the process yields aug-
mented interactions. This iterative mechanism ensures a re-
fined augmentation of interactions, enhancing the dataset’s
applicability across various scenarios.

C.3. Contact-guided Interaction Retargeting

The contact-guided interaction retargeting is a two-step
optimization. We start by optimizing the motion of rarget.
Then with farget contact constraints, we optimize the poses
of the two persons.

Object motion retargeting. We deliberately design
temporal and spatial losses to acquire consistent and smooth
target motion. In the concern of efficiency, we jointly op-
timize all frames in a single data sequence with N frames.
To guarantee the fidelity of object motion, we design the fi-
delity loss Ly to restrict the rotation 2, ; and the translation
T,; with the ground-truth rotation R;, ; and translation T, ;
in NV frames: l

Ly =Ar > (1B = Roll + 115, = Toill). (D

We then address restriction on farget’s spatial position to
avoid penetration with the ground. The spatial loss is de-
fined as:

Lopat = Aspar y_ max(—min(height,), 0), (8)

2

where min(height,) represents the lowest spatial position
of the objects per frame. A smoothness loss is designed
to constrain the object pose difference between consecutive
frames:

§ 2 2
Lismooth = Asmooth aR(m + aTo,i’ )

?

where a is the acceleration of rotation and translation during
N frames defined as:

aR,, = 2Ry — Roi—1 — Roit1, (10)

ar,, = 2To; — Toi—1 — Toiv1, (11)

The total object motion retargeting problem is:

Rm To — angmin(‘Cf + £spat + ['smooth)- (12)
O?TO

Human motion retargeting. We next optimize each
person’s motion based on the motion of target and the con-
tact constraint. To acquire visually plausible motion, we
design the fidelity loss £; and the smoothness 10ss Lsmooth-
Besides, we utilize the contact correctness loss L. to ac-
quire contact consistency in farget interaction motion, and



leverage spatial loss Lgp, similar to Equation 8 to avoid
human-ground inter-penetration.

To enhance motion fidelity, we define two loss functions
Ly and Ly, and let L; = Ly + Ly,r. For joints from the hu-
man arms, despite following the correct temporal collabo-
ration pattern, their global positions would vary concerning
diverse object geometries. Therefore, we utilize oriented
vectors pointing to their parent body joints to obtain a rela-
tive joint fidelity:

Ly = )\srz Z ||(Pg,z - Pparent(j),i) - (P]/,z - Péarent(j),i)”%?

i j€arm

13)

where P;; denotes the 3D global position of joint j in
frame 4, and P’ denotes ground-truth values. Ly, denotes
constraints on the global positions of other joints:

Ly = )\wrz Z ”P]? - Pj’,?”%

% j¢arm

(14)

The design of the smoothness loss is similar to Equa-
tion 9, penalizing huge acceleration of human SMPL-X pa-
rameters to avoid great motion differences between frames:

Lsmooth = Asmooth Z Z (aej,i)Q + (U«Tj,i)g + (an,i)Q'
i je{1,2}
(15)

To leverage contact constraints, we attract human hands
to the corresponding contact region on target. We select
the positions of 20 fingertips of the two persons in the i-th
frame as H; = {Rip,i}ﬁpe[mo], where P are tip positions in
the object’s coordinate system. The contact vertices on the
target from object-centric contact retargeting are defined as
C = {f’ép}ﬁpe[mo]. We minimize the Chamfer Distance
(C'D) between H,; and C to obtain contact consistency:

Le=XY CD(H;,C). (16)

The total human motion retargeting problem is:

01,2, 112,012 «— argmin (L; + Lc + Lepar + Lsmooth),

01,2,T1,2,01,2
(17)

In practice, we run 1,000 and 1,500 iterations respec-
tively for object motion retargeting and human motion retar-
geting. The whole pipeline is implemented in PyTorch with
Adam solver. The learning rate is 0.01. In object motion
retargeting, A for rotation is 500, for translation is 0.005,
Aspat = 0.01, Agmootn = 1. In human motion retargeting,
Aad = 0.1, Ayr = 0.003, A\c = 1,000, Agpar = 0.01, and
Asmooth = 1.

C.4. Human-centric contact selection

The pairwise training dataset utilized for the human
pose discriminator training comprises 636,424 pairs of data.
Each pair encompasses a positive human pose Spo;s € R*1%3
and a negative human pose Syee € R?1*3. The positive hu-
man pose is sampled from the CORE4D-Real. Conversely,
the negative human pose is derived from the correspond-
ing positive sample by introducing noise to its object pose,
subsequently employing the original contact information to
perform contact-guided interaction retargeting. The dis-
criminator is trained by:

ﬁranking = - log(U(Rpos - Rneg - m(sposa Sneg)))a (18)

iterating 1,000 epochs by the Adam solver with a learning
rate 2e-4.

Specifically, the noise A(a, 8,7,2,y,7) incorporates
both rotational and translational components. The rotational
noise A(a, 3,7) ranges from 20 to 60 degrees, while the
translational noise A(z, y, z) falls within the range of 0.2 to
0.5 meters. The margin is computed by:

1m(Spos, Sneg) = (|| + |8+ [7])/10 + (=] + [y| + |]) * 10.

19)

During the contact constraint update process, a penetra-
tion filtering step is performed. For each frame, the pene-
tration volume between the human and object is calculated.
If the penetration volume exceeds 10~* cubic meters, it is
considered a penetration case. If more than 2.5% of frames
within an interaction candidate exhibit penetration, the en-
tire candidate is discarded. Among the remaining candi-
dates, the one with the highest score from the human pose
discriminator is selected to proceed with the contact con-
straint update.

D. Dataset Statistics and Visualization
D.1. Collaboration Modes

COREA4D encompasses five human-human cooperation
modes in collaborative object rearrangement. “Movel”
refers to the scenario where two participants simultaneously
rearrange objects and both are aware of the target. On the
other hand, “move2” represents the scenario where objects
are rearranged simultaneously, but only Person 1 knows the
target. “Pass” indicates that one participant passes the ob-
ject to another for relay transportation. “Join” means that
Person 2 joins Person 1 in carrying the object during trans-
portation. Lastly, “leave” signifies that Person 2 leaves dur-
ing the joint transportation with Person 1.

According to the different durations of the two partici-
pants’ contact with the object, “movel” and “move2” can
be combined into collaborative carrying tasks. “Pass” rep-
resents the task of handover and solely moving the object.



Set #Object #Sequence
Chair Desk Box Board Barrel Stick | Chair Desk Box  Board Barrel  Stick
Real 5 6 9 5 9 4 157 213 200 128 206 58
Synthetic 418 408 376 589 602 596 1767 1344 1326 2123 1495 1961

Table 2. Statistics on object in CORE4D.

Figure 1. T-SNE visualization of human poses for different col-
laboration modes.

Incorporating the join task and the leave task, CORE4D to-
tally comprises four different tasks (see Figure 4 in the main
paper) based on the interaction between humans and ob-
jects. Fig. 5 exemplifies the motions for each task.

As depicted in Fig. 1, distinct characteristics are ex-
hibited by different cooperation modes in high-level move-
ments, thereby offering an innovative standpoint and poten-
tial for comprehending and investigating collaborative be-
haviors.

D.2. Participants

31 participants, encompassing variations in height,
weight, and gender, contributed to the capturing of
CORE4D-Real.

D.3. Objects

COREA4D-Real has 38 objects while CORE4D-Synthetic
has about 3k objects. The objects encompass six categories,
namely box, board, barrel, stick, chair, and desk, each ex-
hibiting a rich diversity in surface shape and size. The dis-
tribution of object categories is detailed in Table 2. All
the objects in CORE4D-Real are shown in Fig. 4. Fig. 3
shows samples from CORE4D-Synthetic and their interpo-
lation process.

D.4. Camera Views

Fig. 2 shows the four allocentric and one egocentric
views of our data capturing system.

Figure 2. Visualization of CORE4D camera views.
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Figure 3. Visualization of CORE4D-Synthetic objects and in-
terpolation.

E. Details on Data Split

Benefiting from the diverse temporal collaboration pat-
terns from CORE4D-Real and the large data amount of
COREA4D-Synthetic, we randomly select a subset of real
object models and construct the training set as the combi-
nation of their real (T-Real) and synthesized (T-Synthetic)
collaboration motion sequences. We formulate two test
sets on CORE4D-Real supporting studies of both non-
generalization and inner-category generalization. The first
test set (S1) consists of interaction performed on the objects
that appear in the training set, while the second one (S2) is
composed of interaction from novel objects. Detailed data
distribution of each object category is shown in Table 3.

F. Evaluation Metrics for Benchmarks

F.1. Human-object Motion Forecasting

Evaluation metrics include the human joints position er-
ror J., the object translation error 7, the object rotation
error R, the human-object contact accuracy Cy, and the
penetration rate P,..



Set #Object #Sequence
Chair Desk Box Board Barrel Stick | Chair Desk Box Board Barrel Stick
T-Real 3 4 6 3 6 2 93 104 96 51 113 25
T-Synthetic | 418 408 376 589 602 596 | 1767 1344 1326 2123 1495 1961
S1 3 4 6 3 6 2 40 62 45 21 51 6
S2 2 2 3 2 3 2 24 47 59 56 42 27

Table 3. Train-test split on CORE4D.

* We define J. as the average Mean Per Joint Position Er-
ror (MPJPE) of the two persons. MPJPE represents the
mean per-joint position error of the predicted human joint
positions and the ground-truth values. The unit of J, is
one millimeter.

¢ Translation error (7,.) and rotation error (R.) denote the
average L2 difference between the predicted object trans-
lation vectors and the ground-truth ones, and the average
geodesic difference between the estimated object rotation
matrices and the ground-truth ones, respectively. The unit
of T, is one millimeter. The unit of R, is one degree.

» Physical metrics: To assess contact fidelity, we detect
contacts on the two hands of the two persons for each
frame with an empirically designed distance threshold
(5 centimeters). We then examine the contact accuracy
(Cyce), which indicates the average percentage of contact
detection errors in the predicted motions. Additionally,
we examine the object penetration ratio (P,) representing
the mean percentage of object vertices inside the human
meshes. The units of the two metrics are percentages.

F.2. Interaction Synthesis

Following an existing individual human-object interac-
tion synthesis study [9], the evaluation metrics include the
root-relative human joint position error RR.J., the root-
relative human vertex position error RR.V,, the human-
object contact accuracy C,., and the FID score (FID).

* RR.J. denotes the average root-relative MPJPE of the
two persons. The root-relative MPJPE represents the
mean per-joint position error of the predicted human joint
positions relative to the human root position and the
ground-truth values. The unit of RR..J, is one millimeter.

* RR.V, denotes the average root-relative Mean Per Vertex
Position Error (MPVPE) of the two persons. The root-
relative MPVPE represents the mean per-vertex position
error of the predicted human vertex positions relative to
the human root position and the ground-truth values. The
unit of RR.V, is one millimeter.

¢ (e is the same as that in Section F.1.

* The Fréchet Inception Distance (FID) quantitatively eval-
uates the naturalness of synthesized human motions. We
first train a feature extractor on CORE4D-Real to encode
each human-object-human motion sequence to a 256D
feature vector f; and acquire the ground-truth human mo-
tion feature distribution D={f;}. We then replace the

motions of the two persons as synthesized ones and ob-
tain another distribution D={f;}. Eventually, the FID de-
notes the 2-Wasserstein distance between D and D. Since
CORE4D-Real provides action labels, the feature extrac-
tor is supervised-trained by fulfilling the action recogni-
tion task. The network structure of the feature extractor is
a single-layer Transformer [21].

G. Qualitative Results on Benchmarks

Figure 6 and Figure 7 exemplify generated motions for
the human-object motion forecasting task and the interac-
tion synthesis task, respectively. Since the baseline meth-
ods do not focus on generating hand poses, we replace
hand poses in ground truth with flat hands to facilitate fair
comparisons. Despite diverse cooperation modes that can
be generated, the baseline methods consistently encompass
unsatisfactory performances including unnatural collabora-
tion, inter-penetration, and unnatural contact.

H. Details on the Application of CORE4D-
Synthetic

To evaluate the application of CORE4D-Synthetic, we
use the lightweight CAHMP [4] to conduct the motion fore-
casting experiments. Unlike the experiments in section
Human-object Motion Forecasting mentioned in the main
paper, where 15 frames are predicted, here we predict the
human-object motion for the next 10 frames given the pre-
vious 10 frames.

H.1. Task Formulation

Given the object’s 3D model and human-object poses in
adjacent 10 frames, the task is to predict their subsequent
poses in the following 10 frames. The human pose P, €
R?3%3 represents the joint rotations of the SMPL-X [15]
model, while the object pose P, = {R, € R, T, € R3}
denotes 3D orientation and 3D translation of the rigid object
model.

H.2. Evaluation Metrics

Following existing motion forecasting works [3, 22, 24],
we evaluate human joints position error .J., object transla-
tion error T, object rotation error R.. Details of the three
metrics can be found in Section F.1.



H.3. Results

Comparing the 1K real dataset with the 0.1K real dataset
supplemented with synthetic data generated through retar-
geting, we observed that the quality of the synthetic data
is comparable to the real data. Additionally, due to the in-
creased diversity of objects and enriched spatial relations
between humans and objects in the synthetic data, it exhibits
better generalization performance in object motion forecast-
ing.

Comparing the evaluation results of the 1K real dataset
with the results obtained by augmenting it with additional
4K synthetic data, we observed a significant performance
gain from the synthetic data. This demonstrates that the
inclusion of synthetic data enhances the value of our dataset
and better supports downstream tasks.

Figure 4. Visualization of CORE4D-Real objects.

I. Details on Humanoid SKkill Learning using
CORE4D

As introduced in Section 5.2 in the main paper, we
use CORE4D’s human-box interaction data to facilitate hu-
manoid skill learning for box lifting. This section presents
details on this application, including the simulation environ-

Handover

Figure 5. Visualization of CORE4D object rearrangement
tasks.

ment configuration (Section I.1), task formulation and eval-
uation (Section 1.2), adapting human interaction data to hu-
manoid (Section 1.3, .4), benchmark method designs (Sec-
tion 1.5), and experiments (Section 1.6). An additional eval-
uation of policy’s generalizability is shown in Section 1.7.

I.1. Environment Setup

We use the popular Unitree H1 humanoid robot [20] in
Isaac Gym [12] simulation environment. The H1 humanoid
has 19 revolute joints with fixed limits on motion ranges.
The interaction scene contains the humanoid, a box weigh-
ing 0.5kg initially posed on the floor, and a third-person-
view camera providing visual signals for the skill policy.

Data clipping: The original interactions in CORE4D are
collaborations of two persons. In this application, we re-
gard each of them as two individual human-object interac-
tion motions and obtain the box-lifting clips automatically
by measuring hand-object distances and the object’s height.
We discard the motion if the individual is not touching the
object during its lifting process.

Train-test split: As a result, we acquire 890 individual
human-box lifting data clips covering 22 boxes augmented
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Figure 6. Qualitative results of human-object motion forecasting. Grey meshes are from the task inputs.

from three real-world ones. We select 16 boxes (504 clips)
as the training set and the remains as the test set. The train-
ing set is used only to train the skill policy (Section 1.5) and
its preceding motion tracker (Section 1.4), while the test set
is used only to evaluate the skill policy to assess its gener-
alizability to unseen box shapes.

Observations: The real-time input of the humanoid skill
policy 18 Z = {Sproprio; T'root, troot; C; D}, Where Sproprio €
R19%2 js humanoid’s proprioception, oo € R? and tye0; €
R? are humanoid’s root orientation and position in the world
coordinate system respectively, and C € R360%480x3 apd
D € R360%480 gre the color and depth image captured by
the camera. Specifically, Sproprio 1S composed of the angles
and velocities of each joint.

Action: Given the real-time input Z, the skill policy
needs to generate an action .4 and use it to actuate the hu-
manoid in the simulation environment. The action A €
R'? is defined as 19 DoF joint angles, which are trans-
ferred to joint torques via a PD controller with pre-defined
proportional-derivative gains [5]. The simulation environ-
ment uses the computed joint torques to actuate the hu-
manoid.

I.2. Task Formulation and Evaluation Metric

Given an unseen box in the scene and a starting position,
the humanoid is required to adjust its pose, touch the box,
and finally lift it larger than 20 centimeters. The evaluation
metric (SR) is the task success rate defined as whether the
box reaches 20 centimeters higher than its initial position.

I.3. Retargeting Interactions from CORE4D onto
H1 Humanoid Robot

Following existing humanoid skill learning advances [6,
7, 18], we use an optimization strategy to solve the retar-
geting problem. The optimization is finding the optimal se-
quence of {Sproprios Troot; troot } that can minimize differences
between motions of the human A and the humanoid B on
positions of K paired joints in the world coordinate sys-

K
tem L, = P, — P, ||?, where P € RT*3 denotes
P k k
k=1

the position sequence of a joint, and 7" is the frame num-
ber. < ay,by > is a pre-defined pair of joints with similar
semantics, where ay, is from the human skeleton, and by, is
from the humanoid skeleton.
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Figure 7. Qualitative results of interaction synthesis.

T 19
We design a temporal loss L; = Y >~ (||Sproprio,t,i —
t=24=1
2 2
Sproprio,t—l,i” + ||Trool,t,i - Trool,t—l,i” + Htroot,t,i -
2 . .
Lroot,t—1,i ) to further improve motion smoothness. The
overall optimization target is L, + L;.

As a result, this retargeting method converts human-
box interaction motions to humanoid-box interaction ani-
mations. The animations are not physically realistic, and
we use the upcoming tracking method to obtain physically
realistic ones following HumanPlus [5].

I.4. Tracking Humanoid-box Interaction Anima-
tions

Given a humanoid-box interaction animation, the motion
tracking methods [11, 16, 19] control the humanoid in the
simulation environment and generate the motion that mostly
closely resembles the animation. The generated motions

are both physically realistic and able to fulfill the task via
mimicking animations, which are utilized as skill demon-
strations in the following skill policy learning.

We select HST [5] as our tracker. The official imple-
mentation of the HST [5] tracker fails to lift the box, and
we design an improved HST that can successfully track the
animations and control the humanoid to lift the box physi-
cally. We describe the key designs of our tracker below.

Input: In each frame, the tracker inputs the states of
the real-time humanoid S}, the humanoid animation target
S, the real-time box Sg,, and the box target Sp. S, =
{rroob T'roots Lroots t.root; JJ,R,R,T, T}s where Troot € R?”
Troot € R, troor € R?, froo € R, J € R, J € RY,
R € R(19+1)X3, R c R(19+1)X3, T € R(19+1)><3’ T c
R(19+1)%3 denotes root’s global orientation, root’s global
angular velocity, root’s global position, root’s global linear
velocity, joint angle, joint velocity, global positions of the



root and joints, global linear velocities of the root and joints,
global orientations of the root and joints, and global angular
velocities of the root and joints. §h is formulated the same
as Sp. Sy = {ry, 7, tv, tp }, Where 7y, 7y, tp, £y denotes box
global orientation, box global angular velocity, box global
position, and box global linear velocity, respectively. Sy
shares the same definition with S.

QOutput: In each frame, the tracker outputs a 19 DoF
action vector representing target joint angles. The joint
torques are computed via a low-level PD controller and
are fed into the simulation environment to actuate the hu-
manoid.

Reward function: The tracker is trained via a reinforce-
ment learning (RL) method PPO [17]. The reward design
is the most crucial part of the method’s performance. Using
original rewards from HumanPlus [5] cannot lift the box
successfully due to inaccurate tracked hand positions. To
handle this issue, we draw inspiration from PhysHOI [23]
and use a multiplication of humanoid reward Ry, box re-
ward R;, and humanoid-box interaction reward R; as the
overall reward Roveral: Roverall = Rn X Rp X R;.

¢ Zzh = 0.56Xp(—5”T - Tﬂl) + 5eXp(_1OHtroot -
trootl[1) 4+ 10exp(=10[[J; — Ji[l1) + 10 exp(—10||J, —
Jr||1), where I/ denotes the left/right hand.

* Rp = exp(—10||tp — £b||1) .

* Ri = exp(—10||P h—p — Pruosli — 10||Prpopy —

PT’ h—bll1), where Py}, and P,_,;, denotes the humanoid

joint position in the box’s coordinate system, and I/r de-

notes the left/right hand.

Training strategies: We adopt an early-termination
strategy from DeepMimic [16] that terminates the rollout
when the humanoid is 0.5 meters away from its target or its
root height is below 0.5 meters.

L.5. Reinforcement Learning and Imitation Learn-
ing Method Designs

Combining the retargeting method (Section 1.3) with the
improved HST tracker (Section .4), we transfer CORE4D’s
data to physically realistic humanoid box-lifting demonstra-
tions. The final step is to train a skill policy that mimics
the demonstrations and can lift unseen boxes in test time.
We select two vision-based imitation learning (IL) meth-
ods, HIT [5] and ACT [26], and use their official imple-
mentations.

To examine the value of the demonstrations, we compare
the two IL methods with a commonly used state-based RL
algorithm PPO [17]. The PPO is implemented with the code
from HumanPlus [5], with a change on the reward design R:
R = Ry + Rsuccess + Ri + Ralive, Where:

* Ry = exp(||ty — b]|3), where £, is the pre-defined target
box center position for the task.
* Rsuccess = [Ra < 0.01] encouraging achieving the task.

e Ri = —0.1(|PLh—bll3 + [|Prh—bl|3), where P,_; and
Ph_>b denotes the humanoid joint position in the box’s co-
ordinate system, and [/r denotes the left/right hand. This
reward encourages humanoid hands to explore near the
object.

* Raive = 0.1 encouraging the humanoid being alive.

1.6. Experiments

The evaluation results are shown in Table 6 and Figure
6 in the main paper. Leveraging CORE4D data, the policy
can achieve 21.0% (for HIT) and 26.5% (for ACT) task suc-
cess rates, which are significantly larger than that of data-
free PPO (0.0%), demonstrating the value of CORE4D for
humanoid box-lifting skill learning.

1.7. Generalizing the Policy to New Box Weights

The boxes used in policy training weigh 0.5kg, while
the boxes in CORE4D-Real are empty cartons with weights
between 0.5kg and 2kg. We use the policy (HST + AST)
trained with 0.5kg boxes to lift heavier boxes and report the
success rates in Table 4. The results indicate that the policy
can generalize to new box weights to some extent and has
the potential to handle common empty cartons.

Box Weight (kg) 0.5 1.0 | 2.0 | 4.0
Success Rate (%) | 26.5 | 11.2 | 7.1 | 3.0

Table 4. Using the policy to lift boxes with different weights.

J. CORE4D-Real Data Capturing Instructions
and Language Annotations

This section describes the instructions given to the par-
ticipants before data capturing (Section J.1) and the cor-
responding language annotations generated by a large lan-
guage model automatically (Section J.2).

J.1. Data Capturing Instructions

Target. We divide a 4m x 5m field into 20 squares and
number them, and place colored labels as markers along
the perimeter of the field. The following language instructs
participants: ”Please collaboratively move the object to the
target square. You can choose any path and orientation of
the object as you like. It is not necessary to be overly pre-
cise with the final position - a rough placement is fine. Do
not make unnatural motions just to achieve an exact posi-
tion. Do not use verbal communication with each other.”.
As for the settings when only one participant knows the tar-
get, the target square number is written on a piece of paper
and shown to the participant who knows the target. And ad-
ditional instructions are given as: "If you know the target,
do not use language or direct body language to inform the
other party (such as pointing out the location). If you do



System
Prompt

You are a narrator skilled in summarizing the behaviors of two people collaboratively rearranging an object in
one sentence and maintaining key information. Each of the behaviors is described in the following three aspects:
(1) An overall task description, indicating the goal of the behavior and the constraints of the target object pose.
(2) A collaboration mode instruction, specifying when should each person contact the object.

(3) The obstacle situation, indicating whether the scene contains obstacles and its influence on the behavior.

User
Prompt

Please clearly summarize the following behavior in a sentence.

(1) Task description: Please collaboratively move the object to the target square. You can choose any path and orientation
of the object as you like. It is not necessary to be overly precise with the final position — a rough placement is fine.

(2) Collaboration mode instruction: Based on the target, please cooperatively transport the chair. Both participants should
be in contact with the object throughout the process.

(3) Obstacle situation: There are a varying number of obstacles on the field. If they get in your way, decide how to solve
it using common everyday operations. If the obstacles occupy the destination, place the object near the destination.

GPT-4
Response

Two people cooperatively move a chair to a target square, maintaining contact with the chair throughout, and adjust
their path as needed to navigate around obstacles, placing the chair near the target if the exact spot is obstructed.

Table 5. The language annotation generation process by using GPT-4.

not know the target, please assist the other participant in
completing the transportation.” .

Collaboration Mode. The instructions are given as follows
to indicate different Collaboration Modes for the partici-
pants. For Collaborate mode: ”Based on the target, please
cooperatively transport the object, or upright any over-
turned tables, chairs, etc. Both participants should be in
contact with the object throughout the process.”. For Han-
dover mode: ”Please decide the handover point yourselves,
then have one person hand the object to the other, complet-
ing the object transfer in relay.”. For Leave and Join modes:
”One person will transport the object throughout, while the
other leaves or joins to help at a time point not disclosed to
the collaborator.”.

Obstacle. The instructions are given as follows to guide
the participants in tackling obstacles: “There are a vary-
ing number of obstacles on the field. If they get in your
way, please decide on your own how to solve it using some
common everyday operations. If the obstacles occupy the
destination, please place the object near the destination.”.

J.2. Language Annotations

For each motion sequence in CORE4D-Real, given the
instructions shown in Section J.1, we generate the corre-
sponding language annotation using GPT-4, where the sys-
tem prompt, the user prompt and the response from GPT-4
are shown in Table 5.
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