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CacheQuant: Comprehensively Accelerated Diffusion Models

Supplementary Material

7. Detailed experimental implementations

We use the pre-training models of DiT-XL/2', DDIMs?, and
LDMs? from the official website. For Stable Diffusion, we
use the CompVis codebase* and its v1.4 checkpoint. The
conditional generation models consist of a diffusion model
and a decoder model. Like the previous works [27, 38, 74],
we focus only on the diffusion model and does not quan-
tize the decoder model. In the reconstruction training, we
set the calibration samples to 1024 and the training batch to
32 for all experiments. However, for the Stable Diffusion,
we adjust the reconstruction calibration samples to 512 and
the training batch to 4 due to time and memory source
constraints. We use open-source tool pytorch-OpCounter’
to calculate the Size and Bops of models before and af-
ter quantization. And following the quantization setting,
we only calculate the diffusion model part, not the decoder
and encoder parts. We use the ADM’s TensorFlow evalua-
tion suite guided-diffusion® to evaluate FID and IS, and use
the open-source code clip-score’ to evaluate CLIP scores.
The accelerated diffusion models are deployed by utilizing
CUTLASS® and PyTorch’. The speed up ratio is calculated
by measuring the time taken to generate a single image on
the RTX 3090. As per the standard practice [37, 38, 50], we
employ the zero-shot approach to evaluate Stable Diffusion
on COCO-val, resizing the generated 512 x 512 images and
validation images in 300 x 300 with the center cropping to
evaluate FID and IS score.

8. Express X, IV, with two correction methods

Based on Eq. 8 and Eq. 9, the direct correction simply ex-
presses X, W, as:

15)

Our method corrects for X, and correct O, respec-

https://github.com/facebookresearch/DiT
Zhttps://github.com/ermongroup/ddim
3https://github.com/CompVis/latent—diffusion
“https://github.com/CompVis/stable-diffusion
Shttps://github.com/Lykenl7/pytorch-OpCounter
Shttps://github.com/openai/guided-diffusion
Thttps://github.com/Taited/clip-score
8https://github.com/NVIDIA/cutlass
Shttps : / / pytorch . org /blog / quantization - in -
practice/

Table 6. Results of LDM-4 on ImageNet with 250 DDIM steps.

Method Retrain Speed 1 FID |
Deepcache-N=12 X 7.58x 635
Cache Deepcache-N=25 X 11.71x  9.51
Deepcache-N=35 X 13.75x  12.32
Deepcache-N=50 X 15.28x  26.63
EDA-DM (W8AB) v 191x 413
Quantization EDA-DM (W4A8) v 191x 4.3
EDA-DM (W4A4) v 335x  44.12
CacheQuant-N=5 (W8AS) X 7.87x  4.03
Ours CacheQuant-N=10 (W8AS) X 12.20x  4.68
CacheQuant-N=15 (W8A8) X 16.65x  5.51
CacheQuant-N=20 (W8AS) X 18.06x  7.21

Table 7. Results of Stable Diffusion on PartiPrompt with 50 PLMS
steps.

Method Retrain Speed 1 CLIP score 1

PLMS-35 steps X 1.47x 27.14
PLMS-25 steps X 2.04x 27.10

PLMS PLMS-20 steps X 2.46 % 27.04
PLMS-15 steps X 3.07x 26.82
PLMS-10 steps X 4.32x 25.92
CacheQuant-N=2 (W8AS8) X 3.13x% 27.19
CacheQuant-N=3 (W8AS8) X 3.91x% 27.18

Ours CacheQuant-N=5 (W8AS8) X 5.20x 27.05
CacheQuant-N=6 (W8AS) X 5.55% 27.05
CacheQuant-N=8 (W8AS8) X 5.85x% 26.88

tively. Based on Eq. 8 and Eq. 9, derive the equation:

X
X.=-42 — b (16)
aq aq
X W b
X W, = g_2=2 (17)
ag ag
Furthermore, the expression for X, W, is as:
X b b
chqui.%,i.%,l (18)

ap a2 ap a2 az

Since the correction parameters (a,b) € RS’ and (a1,b1) €
R, (az, by) € RE’, the two representations of XoqW, are
equivalent if and only if a; = 1 and b; = 0.

9. Experimental settings for evaluation of
acceleration-vs-performance tradeoff

We evaluate the tradeoff between acceleration and perfor-
mance for various approaches in Sec 5.4. The detail experi-
mental settings and results in Figure 6 are shown in Table 6
and 7.
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A-DIiT DiT-XL/2

Ours

Figure 9. Visualization of the generated images by A-DiT and CacheQuant, with N=2 cache frequency.

the silhouette of a doorknocker A beaver wearing a portrait A oil painting of a A raccoon wearing A black and white a Styracosaurus A figure shrouded in
an elephant on shaped like a glasses, stands next of an old badger sniffing a formal clothes,  landscape photograph  displaying its mists peers up cobble
the full moon lion's head to a stack of books. man yellow rose. wearing a tophat. of a black tree horns stone street.
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Figure 10. Visualization of the generated images by BK-SDM-Base, Small SD, Deepcache with N=10 cache frequency, and CacheQuant.
All the methods adopt the 50-step PLMS. The time here is the duration to generate a single image.

10. Comparison of generated results 11. Limitations and future work

o ) ) ) While CacheQuant achieves remarkable results in a
Within this section, we present random samples derived  raining-free manner at 8-bit precision, it relies on recon-
from original models and other accelerated methods with struction to recovery performance at W4A8 precision. In
a fixed random seed. Our method maintains 8-bit precision. the future, we will further refine CacheQuant to improve its
We visualize the generated image quality and latency of dif- compatibility with W4AS precision.

ferent methods in Figures 9 and 10.
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