
CVPR
#13022

CVPR
#13022

CVPR 2025 Submission #13022. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

CacheQuant: Comprehensively Accelerated Diffusion Models

Supplementary Material

7. Detailed experimental implementations847

We use the pre-training models of DiT-XL/21, DDIMs2, and848
LDMs3 from the official website. For Stable Diffusion, we849
use the CompVis codebase4 and its v1.4 checkpoint. The850
conditional generation models consist of a diffusion model851
and a decoder model. Like the previous works [27, 38, 74],852
we focus only on the diffusion model and does not quan-853
tize the decoder model. In the reconstruction training, we854
set the calibration samples to 1024 and the training batch to855
32 for all experiments. However, for the Stable Diffusion,856
we adjust the reconstruction calibration samples to 512 and857
the training batch to 4 due to time and memory source858
constraints. We use open-source tool pytorch-OpCounter5859
to calculate the Size and Bops of models before and af-860
ter quantization. And following the quantization setting,861
we only calculate the diffusion model part, not the decoder862
and encoder parts. We use the ADM’s TensorFlow evalua-863
tion suite guided-diffusion6 to evaluate FID and IS, and use864
the open-source code clip-score7 to evaluate CLIP scores.865
The accelerated diffusion models are deployed by utilizing866
CUTLASS8 and PyTorch9. The speed up ratio is calculated867
by measuring the time taken to generate a single image on868
the RTX 3090. As per the standard practice [37, 38, 50], we869
employ the zero-shot approach to evaluate Stable Diffusion870
on COCO-val, resizing the generated 512 × 512 images and871
validation images in 300 × 300 with the center cropping to872
evaluate FID and IS score.873

8. Express XcqWq with two correction methods874

Based on Eq. 8 and Eq. 9, the direct correction simply ex-875
presses XcqWq as:876

XcqWq =
XgWg

a
− b

a
(15)877

Our method corrects for Xc and correct Ocq , respec-878

1https://github.com/facebookresearch/DiT
2https://github.com/ermongroup/ddim
3https://github.com/CompVis/latent-diffusion
4https://github.com/CompVis/stable-diffusion
5https://github.com/Lyken17/pytorch-OpCounter
6https://github.com/openai/guided-diffusion
7https://github.com/Taited/clip-score
8https://github.com/NVIDIA/cutlass
9https : / / pytorch . org / blog / quantization - in -

practice/

Table 6. Results of LDM-4 on ImageNet with 250 DDIM steps.

Method Retrain Speed ↑ FID ↓

Cache

Deepcache-N=12 ✗ 7.58× 6.35
Deepcache-N=25 ✗ 11.71× 9.51
Deepcache-N=35 ✗ 13.75× 12.32
Deepcache-N=50 ✗ 15.28× 26.63

Quantization
EDA-DM (W8A8) ✓ 1.91× 4.13
EDA-DM (W4A8) ✓ 1.91× 4.13
EDA-DM (W4A4) ✓ 3.35× 44.12

Ours

CacheQuant-N=5 (W8A8) ✗ 7.87× 4.03
CacheQuant-N=10 (W8A8) ✗ 12.20× 4.68
CacheQuant-N=15 (W8A8) ✗ 16.65× 5.51
CacheQuant-N=20 (W8A8) ✗ 18.06× 7.21

Table 7. Results of Stable Diffusion on PartiPrompt with 50 PLMS
steps.

Method Retrain Speed ↑ CLIP score ↑

PLMS

PLMS-35 steps ✗ 1.47× 27.14
PLMS-25 steps ✗ 2.04× 27.10
PLMS-20 steps ✗ 2.46× 27.04
PLMS-15 steps ✗ 3.07× 26.82
PLMS-10 steps ✗ 4.32× 25.92

Ours

CacheQuant-N=2 (W8A8) ✗ 3.13× 27.19
CacheQuant-N=3 (W8A8) ✗ 3.91× 27.18
CacheQuant-N=5 (W8A8) ✗ 5.20× 27.05
CacheQuant-N=6 (W8A8) ✗ 5.55× 27.05
CacheQuant-N=8 (W8A8) ✗ 5.85× 26.88

tively. Based on Eq. 8 and Eq. 9, derive the equation: 879

Xc =
Xg

a1
− b1

a1
(16) 880

XcqWq =
XcWg

a2
− b2

a2
(17) 881

Furthermore, the expression for XcqWq is as: 882

XcqWq =
Xg

a1
· Wg

a2
− b1

a1
· Wg

a2
− b2

a2
(18) 883

Since the correction parameters (a, b) ∈ RCo

and (a1, b1) ∈ 884

RCi

, (a2, b2) ∈ RCo

, the two representations of XcqWq are 885
equivalent if and only if a1 = 1 and b1 = 0. 886

9. Experimental settings for evaluation of 887

acceleration-vs-performance tradeoff 888

We evaluate the tradeoff between acceleration and perfor- 889
mance for various approaches in Sec 5.4. The detail experi- 890
mental settings and results in Figure 6 are shown in Table 6 891
and 7. 892
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Figure 9. Visualization of the generated images by ∆-DiT and CacheQuant, with N=2 cache frequency.
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Figure 10. Visualization of the generated images by BK-SDM-Base, Small SD, Deepcache with N=10 cache frequency, and CacheQuant.
All the methods adopt the 50-step PLMS. The time here is the duration to generate a single image.

10. Comparison of generated results893

Within this section, we present random samples derived894
from original models and other accelerated methods with895
a fixed random seed. Our method maintains 8-bit precision.896
We visualize the generated image quality and latency of dif-897
ferent methods in Figures 9 and 10.898

11. Limitations and future work 899

While CacheQuant achieves remarkable results in a 900
training-free manner at 8-bit precision, it relies on recon- 901
struction to recovery performance at W4A8 precision. In 902
the future, we will further refine CacheQuant to improve its 903
compatibility with W4A8 precision. 904
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