
Appendix

A. Details on Data, Model, and Training
City Walking Videos. We source our training video data
mainly from the city walking1 and driving2 playlists on
YouTube. The full sourced videos have a total length of
2522 hours. We use 2000 hours of them for training. These
videos cover different weather and lighting conditions. Fig-
ure I shows a detailed distribution of each condition.

The lower part of Fig. I illustrates the proportion of each
critical scenario in our offline expert data based on our def-
initions. We observe that the union of critical scenarios
accounts for less than half of the dataset. However, these
scenarios contribute most to the success rate in real-world
experiments. This highlights the need for future work to
enhance model performance in these critical areas.
Hyperparameters for Model and Training. For model
and training hyperparameters, we largely follow previous
work [1] and adapt some parameters to our case, as shown
in Tab. II. Note that DINOv2 [2] uses ViT [3] so it can adapt
to any input resolution as long as it is divisible by the patch
size. Therefore, we center-crop the 360× 640 city walking
videos to 350× 630, and the 400× 400 teleoperation video
to 392 × 392 to keep the aspect ratio and as much visual
content as possible.

B. More Quantitative Results
Full Ablation Study. In Tab. I, we provide an extended
ablation study, including all the critical scenarios. We can
observe that the addition of orientation loss and feature hal-
lucination loss does not result in significant performance
improvements. This lack of noticeable enhancement can be
attributed to several factors, including the limited size of our
training data (1000 hours) and the constrained nature of our
test dataset, which is prone to substantial noise in the evalu-
ation results. Consequently, we consider errors beyond the
decimal point to be negligible.

Another interesting observation is the decline in perfor-
mance within the Turn scenario following fine-tuning. We
attribute this performance drop to the disproportionate rep-
resentation of Turn scenarios in our fine-tuning data (8%)
compared to the original video data (32%), leading to in-
sufficient training examples for effectively handling turns.
VLM Performance. In Tab. III, we present the perfor-
mance of the VLM (GPT-4o [4]) on our urban navigation
tasks. Our results indicate that GPT-4o struggles to gener-
ate reasonable navigation actions off-the-shelf via prompt-
ing. However, it performs reasonably in predicting the ar-
rival status, likely because this sub-task is inherently more
straightforward given the input of past and target locations.

1https://www.youtube.com/@WALKS and the CITY/playlists
2https://www.youtube.com/@jutah/playlists
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Figure I. Data distribution. Top: The distribution of different
weather and lightning conditions in our video training data. Bot-
tom: The distribution of different critical scenarios in our collected
data.
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Figure II. Performance and Model Szie. We show model per-
formance with respect to the size of the model, measured by the
number of parameters in the model.

Impact of Model Size. We also run experiments to discover
the impact of model size on navigation performance. This is
done by modifying the number of layers in the transformer
model. From Fig. II, we can observe the clear trend that a
larger model with more parameters leads to better perfor-
mance, especially in the zero-shot case. Note that all mod-
els in the figure are trained with 2000 hours of video data
and we can see a trend of saturation with even larger mod-
els. This aligns with the scaling law observed in previous

https://www.youtube.com/@WALKS_and_the_CITY/playlists
https://www.youtube.com/@jutah/playlists


Table I. Full Ablation Study. Here we provide a extended ablation study in supplementary ??. The result is evaluated for all scenarios.

Training Components Mean Turn Crossing Detour Proximity Crowd Other AllOri. Loss Feature Hall. Fine-tuning

17.03 27.09 16.25 16.72 16.99 13.28 11.88 13.16
✓ 17.00 27.14 16.40 16.43 16.74 13.19 12.12 13.32
✓ ✓ 17.02 27.17 15.92 16.51 17.19 13.23 12.10 13.32

✓ 15.23 28.94 13.90 13.14 14.39 11.19 9.91 11.12
✓ ✓ 15.21 28.69 14.05 13.12 14.17 11.19 10.01 11.18
✓ ✓ ✓ 15.16 27.36 14.05 13.20 14.44 11.59 10.31 11.41

Table II. Hyperparameters for training the CityWalker model.

Hyperparameter Value

CityWalker Model
Total # Parameters 214M
Trainable # Parameters 127M
Image Encoder DINOv2 [2]
Backbone Arch. ViT-B/14
City Walking Input Res. 350× 630
Teleop Input Resolution 392× 392
Token Dimension 768
Attn. Hidden Dim. 768
# Attention Layers 16
# Attention Heads 8
Input Context 5
Prediction Horizon 5
Input Cord. Repr. Polar Cord.
Fourier Feat. Freq 6

Training
# Epochs 10
Batch Size 32
Learning Rate 2× 10−4

Optimizer AdamW [5]
LR Schedule Cosine
Compute Resources 2 × H100
Training Walltime 30 hours
Fine-tuning LR 5× 10−5

L1 Loss Weight φl1 1.0
Ori. Loss Weight φori 5.0
Arr. Loss Weight φarr 1.0
Feat. Loss Weight φfeat 0.1

works [2, 6–8] that a larger model should be accompanied
with larger data to produce better results.
Image Backbones. In Tab. IV, we show that our model per-
formance is not sensitive to the choice of image backbones.
This makes embodied depolyment very efficient. While our
model with DiNOv2 backbone only has 1.7 fps inference
speed on a RTX 3060 laptop, this can be boosted to 20 fps
by switching to EfficientNetB0 backbone without sacrific-
ing model performance.

Table III. VLM Results on Offline Data.

Scenario GPT-4o [4] Ours
↓AOE(5) ↓MAOE ↑Arrival ↓AOE(5) ↓MAOE ↑Arrival

Mean 72.22◦ 87.39◦ 69.38% 7.97◦ 15.23◦ 81.85%
Turn 68.61◦ 88.02◦ 68.66% 19.67◦ 26.63◦ 68.91%
Cros. 65.33◦ 81.12◦ 66.52% 5.43◦ 14.07◦ 75.03%
Detour 76.86◦ 90.76◦ 68.81% 8.71◦ 13.94◦ 78.54%
Prox. 75.65◦ 95.74◦ 66.33% 5.54◦ 14.32◦ 90.64%
Crowd 75.85◦ 84.88◦ 75.47% 4.77◦ 12.01◦ 87.50%
Other 71.03◦ 83.85◦ 70.49% 3.67◦ 10.40◦ 90.19%
All 71.51◦ 85.03◦ 70.04% 4.63◦ 11.53◦ 87.84%

Table IV. Comparison of backbones and architecture. All mod-
els are pretrained with 2000 hours of video and fine-tuned with ex-
pert data. Both metrics are taking the category mean. *Pretrained
from ACO [9].

Metric EfficientNetB0 ResNet50 DiNOv2 ResNet34* ViNT**

MAOE (↓) 15.33◦ 15.16◦ 15.23◦ 15.13 ◦ 15.26 ◦

L2 (↓) 1.11 m 1.15 m 1.12 m 1.09 m 1.08 m

C. More Qualitative Results
In Fig. III, we provide more qualitative resting results on the
offline data. We divide the results into three categories. Suc-
cess: predicted action aligns well with ground truth action.
Large error: predicted action does not align with ground
truth but may still lead to successful navigation. Fail: pre-
dicted action may lead to failed navigation. The most sig-
nificant observation is that large errors in offline data do not
necessarily lead to failure in navigation, due to the multi-
modality characteristic of policy learning. For example, in
the fifth row, although the ground truth action takes a de-
tour to the right of the traffic drum, the predicted action that
goes straight from the left of the drum should also lead to
successful navigation.
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Figure III. More Qualitative Results. We provide more qualitative results in our offline testing. The results are categorized into success,
large error, and fail. Success means the predicted action aligns with ground truth action. Large error mean prediction action does not align
with ground truth but still lead to success navigation. Fails cases are those may lead to failed navigation.
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