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Appendix

A. Broader Impact

Our method aims at improving the trustworthiness and reli-
ability of deployment of MLLMs in real world application,
including but not limited to Vision Pro, autonomous driving,
and also humanoid robots. To have a virtual assistant like
JARVIS in Marvel films, it’s necassry to align the understand-
ing of vision-language model with human’s understanding,
so that we can ensure safe application of these applications.
Further, we are committed to reducing the carbon emissions
produced by these models. By employing our coarse cor-
respondence prompting method, we use a much smaller
tracking module to reduce the number of input used as input
to large GPT model. Besides, we also improve the speed
and lower the cost of calling OpenAI API to understand a
3d scene. This enables democratize MLLMs so that more
people and small companies can create their own real-world
applications based on GPT-4V. We hope our work can make
large AI models more effectively used for social good.

Still, we would like to point out that with the develop-
ment of MLLMs, increased reliance on advanced MLLMs
could also lead to a reduction in human skills, especially
in interpreting and interacting with visual content. Over-
dependence on these models might erode critical thinking
and analytical abilities in the long term.

B. Related Work

Video understanding. Videos carry rich information about
both the 3D structure as well as temporal changes in
the physical world. To perform better long-horizon rea-
soning, work has begun incorporating video inputs into
MLLMs. Recent work [9] has improved performance on
video dense captioning [8] and videoQA [5, 21]. To fur-
ther advance the understanding of temporal relationships in

*Equal contribution.

videos, EgoSchema [12] introduced a benchmark for long
video understanding, which is more challenging than previ-
ous video-language benchmarks. Meanwhile, understanding
3D spatial relationships in videos received relatively less
attention. 3D-LLM [6] converts multiview images into 3D
point clouds and then feeds them into LLMs, demonstrating
better results on the ScanQA [1] benchmark for 3D under-
standing. OpenEQA [11] is also a benchmark dedicated to
evaluating MLLM’s understanding of 3D physical space,
with outputs that are more open-vocabulary compared to
ScanQA. In this paper, we propose a framework that does not
require any training in modifying MLLMs; it extracts mean-
ingful information from videos using off-the-shelf tracking
models and achieves state-of-the-art performance on the
benchmarks mentioned.
Visual correspondences. Visual correspondences have been
a vital area of research in computer vision for a few decades.
Applications such as Structure-from-Motion[17] utilize cor-
respondences to better reconstruct 3D scenes. In the past, we
relied on handcrafted features like SIFT [10] or SURF [3]
to obtain good correspondence. Today, features extracted
from deep models [18] can also provide increasingly ac-
curate correspondences. Generally, people aim to achieve
precise geometric and semantic correspondences at the pixel
level. However, in this paper, we use coarse visual corre-
spondence to prompt MLLMs, which can be easily obtained
from off-the-shelf video tracking models [22].

C. Coarse Correspondence Implementation De-
tails

As discussed in Method section, visualizing our proposed
Coarse Correspondence on images will involve a centering
algorithm. The inputs are selected instance segmentation
masks that originally obtained from tracking model. A center
of the instance mask needs to be determined in order to place
the coarse correspondence marker. It is worth noting that
the instance mask does not necessarily form a connected
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component, which makes the centering procedure worth
explaining.

Figure 1. The pseudo code of our proposed algorithm to find the
center of a given object mask. The Coarse Correspondence will be
further added to the object center

As shown in the pseudo code in Figure 1, firstly we cal-
culate the medium x-index of the masked pixels and loop
through this column, trying to find the first center point. Sim-
ilarly, we calculate the medium y-index of the masked pixels
and loop through this row, trying to find another center point.
Normally we return the average location of these two centers.
If either of these centers failed to be positioned in the masked
area (which may happens when the mask is not a connected
components), we adopt the other one. If both of them failed
to deliver, we adopt a naive center by simply averaging the
four boundary.

D. More Results on Proprietary Models
We further evaluate COARSE CORRESPONDENCES by aug-
menting both Gemini and Claude models. Following prior
works, we adopt BLEU [14] scores, METEOR [2], ROUHE-
L [15] and CIDEr[20] as our evaluation metrics. As shown in
Tab. 1, COARSE CORRESPONDENCES constantly improves
the performance of both models, which demonstrates the
generalizability of our method.

E. Qualitative Case Study
To further demonstrate the effectiveness of our proposed
Coarse Correspondence under sparse image input, we de-
fined two challenging tasks and one qualitative case study
for each task.

Figure 2. Task: Duplicate Objects Counting. There are 2 brown
sofas and 2 black sofas. The brown sofas in View 2&4 are du-
plication of those in View 3. Only with the help of the Coarse
Correspondence can GPT-4V understand duplicate objects between
different views across a single 3D scene.

The results of these case studies are shown in Fig. 2 and
Fig. 3. Detailed illustration of the results are provided in
the figure captions. The first case study is about the task of
Duplicate Objects Counting, where the model needs to count
the number of objects in a 3D scene. Only equipped with
coarse correspondence can GPT-4V get a comprehensive un-
derstanding of the 3D scene, excludes the duplicate objects,
and give the right answer.The second case study is about
the task of Relative Location Modeling, where the model
needs to understand the relative location of objects in a 3D
scene. It is obvious that without the correspondence markers,
GPT-4V fails to response from 3D perspective with only raw
2D images.These case studies demonstrate that our proposed
Coarse Correspondence can elicit MLLMs in understanding
3D scenes from sparse image inputs.

We also prove that our Coarse Correspondence method
works well with hand-crafted correspondence marks as
shown in Figure 4. This further proves that our proposed
method are style-agnostic as long as the marks is able to
deliver the spatial correspondence knowledge.

F. Analysis on Different Question Types
In Figure 5, we analyze the improvements brought by
COARSE CORRESPONDENCES across different question
types in OpenEQA. It can be observed that COARSE CORRE-
SPONDENCES enhances performance for all question types,



Model Frame BLEU-1 BLEU-2 METEOR ROUGE-L CIDEr

Proprietary Multi-modal Models

Gemini 8 24.1 13.5 11.3 35.4 68.3
Gemini+Coarse Correspondences 8 25.4 15.7 12.0 37.1 75.5

Claude 8 19.8 11.1 10.0 29.3 57.7
Claude+Coarse Correspondences 8 27.1 23.9 11.7 33.1 65.7

Table 1. Comparison on ScanQA validation set. We conduct experiments on the ScanQA validation set to demonstrate the effectiveness of
COARSE CORRESPONDENCES with different MLLMs. Our method enables both proprietary models and open-source models to surpass all
3D-specific models.

Figure 3. Task: Relative Location Modeling. From View 1 & 2
we can tell that the room door is on the left-hand-side when facing
the washbasin. Only with the help of the Coarse Correspondence
can GPT-4V understand relative location between objects appear in
different views across a single 3D scene.

with the most significant improvement in spatial understand-
ing. This demonstrates the generalizability of our approach.
Furthermore, it confirms that our approach effectively boosts
the spatial reasoning capabilities of MLLMs. Of course,
there is still much room for improvement in enhancing the
spatial reasoning capabilities of MLLMs.

G. The SOT benchmark for Spatial Orientation
Test

Considering that a crucial aspect of embodied tasks like nav-
igation is the judgment of left-right orientation, we aimed to
gain a deeper understanding of how COARSE CORRESPON-
DENCES influences MLLMs’ comprehension of left-right
spatial orientation. Specifically, we focused on two key ques-

tions: 1) Are MLLMs robust to camera motion bias? Ideally,
MLLMs’ understanding of left-right orientation in 3D space
should be independent of whether the camera is moving
from left to right or right to left, meaning MLLMs should be
robust to camera motion bias. 2) Do MLLMs possess spatial
perspective-taking ability, i.e., the ability to imagine how an
object or scene would appear from a perspective different
from the current camera viewpoint? Numerous studies in hu-
mans [13, 19] have shown that this ability is closely related
to the development of spatial intelligence in children.

However, current benchmarks face three issues: 1) They
may have been partially used in MLLM training data, 2)
Current benchmarks lack annotations regarding whether the
3D space scan was conducted from left to right or right
to left, making it difficult to analyze the impact of camera
motion on MLLMs, and 3) Existing benchmarks evaluate
a model’s 3D spatial awareness from the perspective of the
camera-wielding observer.

Therefore, we introduce a new diagnostic benchmark to
evaluate MLLMs: Spatial Orientation Test (SOT). Once
again, we show that COARSE CORRESPONDENCES im-
proves GPT-4V,O’s abilities on this new benchmark.
Data curation. We manually curated ten real-world scenes,
both indoor and outdoor, using different mobile devices at
various viewpoints. We instructed 10 human participants to
take two videos in their environment from two viewpoints.
When in each viewpoint, they were asked to remain in place
as they laterally pan their mobile devices to scan their 3D
environment. From 20 collected scenes, we filtered to and
retained 10 scenes that satisfied the following four criteria:
First, we could uniquely describe one viewpoint from the
perspective of the other and vice-versa. For example, in Fig-
ure 6, we define the other viewpoints as ’a person stepping
out of an elevator.’ Second, we ensured that no single frame
captured the entire 3D space, ensuring that models can not
short-cut answers using any single view. Third, all scans
move the camera from left to right. Fourth, to avoid privacy
concerns, we ensured that no people appeared in the videos.
Each scene scan lasts between 3 to 5 seconds.

For each scene, we designed five carefully crafted ques-
tions, each asking the model to determine if one object is to
the left or to the right of another from a specific viewpoint.



Figure 4. Hand-crafted coarse correspondence label

The first three questions are from the observer’s (camera’s)
perspective, while the final two describe the perspective in
language, thereby, testing for a model’s spatial perspective-
taking ability. Human performance on these questions is
100%. We design SOT questions to have a bias towards
asking about relationships between objects that appear in
the first last frame of the scan, ensuring that the has to use
multiple frames to answer. In total, across the 10 scenes,
SOT has a modest 50 questions.

Results. As shown in Table 2, COARSE CORRESPON-
DENCES performs very well even on in-the-wild data. For in-
stance, when using only the first and last frames, our method
results in a 13.4 % improvement. As illustrated in Figure 6,
our method enables GPT-4O to understand the 3D spatial
structure represented by the images using minimal overlap,
whereas GPT-4O alone performs only slightly better than
random guessing.

Models Frame Origin Reverse Harmonic Mean

GPT-4O 2 58.2 50.0 53.8

GPT-4O+CC 2 71.6 70.6 71.1

GPT-4O 4 58.0 50.4 53.9

GPT-4O+CC 4 71.2 71.2 71.2

Table 2. Comparisons on SOT. COARSE CORRESPONDENCES

shows strong capability of enhancing 3D spatial understanding of
MLLMs. It can also ease the striking finding of camera motion bias
of current MLLMs.
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Figure 5. Breakdown Analysis of OpenEQA Results. We provide a detailed analysis of the improvements across different question types
after applying COARSE CORRESPONDENCES.

Question A Type: Observer Perspective Understanding
From the observer‘s perspective, on which side of the 
elevator is the building's main entrance? A. Left B. Right
Question B Type: Spatial Perspective Taking
If Frank has just entered the building through the main 
entrance, on which side is the elevator from Frank's 
perspective? A. Left B. Right. Please answer from Frank's 
perspective, not the observer’s.

😵 Question A: A.Left. From the two images you 
upload, the elevator is on the left side of the 
building’s main entrance.

🧐 Question A: B.Right. From the two images 
you upload, the elevator is on the right side of 
the building’s main entrance.

😵 Question B: A.Left. Based on the images, the 
elevator is on the left side.

🧐 Question B: B.Right. Based on the images 
you upload, from Frank’s perspective, the 
elevator is on the left.

MLLM

Figure 6. Illustration of our SOT dataset. We mention two types of questions: Observer perspective understanding and spatial-perspective
taking. COARSE CORRESPONDENCES demonstrates superior effectiveness on the dataset.

More importantly, according to Table 2, we found that
current MLLMs achieve significantly higher accuracy on
videos filmed from left to right compared to those filmed

from right to left, indicating that even models like GPT-
4O have a strong camera motion bias. Our method greatly
mitigates this issue. By calculating the harmonic mean of
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Figure 7. Comparisons on SOT’s spatial perspective-taking
questions. COARSE CORRESPONDENCES improves performance
but GPT-4O still performs below random chance.

results from both left-to-right (L− > R) and right-to-left
(R− > L) camera pans, we found that our method brought
a 17.3 % improvement, indicating that COARSE CORRE-
SPONDENCES helps MLLMs learn a more equivariant visual
representation from image sequences.

Additionally, we isolated the performance on the two
perspective-taking questions per scene in Figure 7. We dis-
covered that current MLLMs still lack the ability for spatial
perspective-taking. While COARSE CORRESPONDENCES
improves GPT-4O’s perspective-taking capability, the results
are bittersweet, as they still perform worse than random
guessing. This suggests that embodied spatial awareness has
yet to emerge in MLLMs—at least for now—highlighting a
potential direction for future research.

H. More Discussions

Limitations. Our method relies on off-the-shelf video track-
ing models to obtain instance-level correspondences. Al-
though the performance of tracking models has significantly
improved with the advent of tools like SAM [7], achiev-
ing good results on long-form in-the-wild videos remains
challenging. This is particularly evident on the 180-second
EgoSchema benchmark, where Track-Anything often loses
track of objects after 100 seconds, leading to inconsistent
instance segmentation masks between the beginning and end
of the video clip. Despite observing consistent and signifi-
cant improvements on EgoSchema, we believe that accurate
correspondence would further enhance the benefits of our
approach.
Relation to SlowFast SlowFast [4] is a framework for video
recognition that includes two parallel pathways: a Slow path-
way that captures motion information at a high frame rate

and a Fast pathway that captures semantic information at a
low frame rate. The information from both pathways is fused
through lateral connections for downstream video recogni-
tion tasks. In a way, our coarse correspondence prompting
can be seen as another form of SlowFast. However, un-
like SlowFast, where the Slow and Fast pathways operate
in parallel, our framework operates sequentially. First, it
captures low-level, class-agnostic motion information at a
high frame rate using a lightweight tracking model. Then,
at a low frame rate, it performs recognition and reasoning
requiring semantic understanding using larger MLLMs. The
two stages are bridged through visual prompting. Moreover,
while SlowFast learns a representation of the input video
for pure vision recognition tasks such as action classifica-
tion and detection, our coarse correspondence framework
aims to better understand the 3D spatial structure and tem-
poral information contained in the input video to achieve
spatiotemporal perception and reasoning simultaneously.
Eulerian vs Lagrangian If deep learning-based methods
represent camera or object motion in videos from an Eu-
lerian viewpoint—i.e., expressing how features at fixed lo-
cations evolve over time through a multi-dimensional ten-
sor—then our framework adds a Lagrangian viewpoint to
this representation. The Lagrangian viewpoint describes the
trajectories of entities moving through space and time in the
video. Previously, the Lagrangian viewpoint in video de-
scriptions has been shown to better aid human action recog-
nition [16]. Here, we demonstrate that it can more generally
help MLLMs understand the 4D spatiotemporal context rep-
resented in videos.

References
[1] Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki

Kawanabe. Scanqa: 3d question answering for spatial scene
understanding. In proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 19129–
19139, 2022. 1

[2] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic
metric for mt evaluation with improved correlation with hu-
man judgments. In Proceedings of the acl workshop on intrin-
sic and extrinsic evaluation measures for machine translation
and/or summarization, pages 65–72, 2005. 2

[3] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf:
Speeded up robust features. In Computer Vision–ECCV 2006:
9th European Conference on Computer Vision, Graz, Aus-
tria, May 7-13, 2006. Proceedings, Part I 9, pages 404–417.
Springer, 2006. 1

[4] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition, 2019.
6

[5] Madeleine Grunde-McLaughlin, Ranjay Krishna, and Ma-
neesh Agrawala. Agqa: A benchmark for compositional
spatio-temporal reasoning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11287–11297, 2021. 1



[6] Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng,
Yilun Du, Zhenfang Chen, and Chuang Gan. 3d-llm: Injecting
the 3d world into large language models. Advances in Neural
Information Processing Systems, 36, 2024. 1

[7] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross
Girshick. Segment anything. arXiv:2304.02643, 2023. 6

[8] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and
Juan Carlos Niebles. Dense-captioning events in videos, 2017.
1

[9] Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and
Li Yuan. Video-llava: Learning united visual represen-
tation by alignment before projection. arXiv preprint
arXiv:2311.10122, 2023. 1

[10] David G Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vision,
60:91–110, 2004. 1

[11] Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav Putta,
Sriram Yenamandra, Mikael Henaff, Sneha Silwal, Paul Mc-
vay, Oleksandr Maksymets, Sergio Arnaud, Karmesh Yadav,
Qiyang Li, Ben Newman, Mohit Sharma, Vincent Berges,
Shiqi Zhang, Pulkit Agrawal, Yonatan Bisk, Dhruv Batra,
Mrinal Kalakrishnan, Franziska Meier, Chris Paxton, Sasha
Sax, and Aravind Rajeswaran. Openeqa: Embodied question
answering in the era of foundation models. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2024. 1

[12] Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra
Malik. Egoschema: A diagnostic benchmark for very long-
form video language understanding, 2023. 1

[13] Nora Newcombe. The development of spatial perspective
taking. Advances in child development and behavior, 22:
203–247, 1989. 3

[14] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pages 311–318,
2002. 2

[15] Zhaopeng Qiu, Xian Wu, and Wei Fan. Automatic distractor
generation for multiple choice questions in standard tests.
arXiv preprint arXiv:2011.13100, 2020. 2

[16] Jathushan Rajasegaran, Georgios Pavlakos, Angjoo
Kanazawa, Christoph Feichtenhofer, and Jitendra Malik.
On the benefits of 3d pose and tracking for human action
recognition, 2023. 6

[17] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 4104–
4113, 2016. 1

[18] Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng
Phoo, and Bharath Hariharan. Emergent correspondence from
image diffusion. Advances in Neural Information Processing
Systems, 36:1363–1389, 2023. 1

[19] Barbara Tversky and Bridgette Martin Hard. Embodied and
disembodied cognition: Spatial perspective-taking. Cognition,
110(1):124–129, 2009. 3

[20] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. Cider: Consensus-based image description evalu-
ation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4566–4575, 2015. 2

[21] Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua.
Next-qa:next phase of question-answering to explaining tem-
poral actions, 2021. 1

[22] Jinyu Yang, Mingqi Gao, Zhe Li, Shang Gao, Fangjing Wang,
and Feng Zheng. Track anything: Segment anything meets
videos. arXiv preprint arXiv:2304.11968, 2023. 1


	Broader Impact
	Related Work
	Coarse Correspondence Implementation Details
	More Results on Proprietary Models
	Qualitative Case Study
	Analysis on Different Question Types
	The SOT benchmark for Spatial Orientation Test
	More Discussions

