Creating Your Editable 3D Photorealistic Avatar with
Tetrahedron-constrained Gaussian Splatting

Supplementary Material

In our supplementary material, we provide:
* Details of 3D avatar instantiation.
* Details of localized spatial adaptation.
* Details of texture generation.
* Details of reference image-based editing.
* More edited results.
» Experimental details on baseline comparison.
* Applications.
 Limitations.

A. Details of 3D avatar instantiation

To provide accurate geometry and appearance prior for
TetGS initialization and pave the way for the following edit-
ing phase, we perform high-quality 3D avatar instantiation
from captured real-world monocular videos.

A.l. Architecture of implicit reconstruction with
SDF field

To obtain precise geometric surface for TetGS initialization,
we conduct multi-view surface reconstruction utilizing an
SDF field, which is instantiated by a 4-layer MLP ¢ with
512 hidden units per layer. Given a spatial point x, the SDF
field 1) maps it to its signed distance value 5 to the object
surface. A predicted normal i’ and a geometric feature 2 is
also output by . The SDF field is followed by an appear-
ance field v, which predicts the view-dependent color ¢
for point = under view direction d. The appearance MLP
Yapp has 2 layers with 128 hidden units. The network ar-
chitecture is illustrated in Fig. 10. To improve sampling
efficiency, we apply two rounds of proposal sampling and
then a NeRF sampling following Mip-NeRF 360 [3]. The
overall training loss contains a color reconstruction loss L.,
an eikonal loss [16] L;.4, and two normal regularization
losses L, and L,:

Lrec = Lc + )\TegLreg + )\pr + /\0L07 (11)
where {A;eg, Ap, Ao} are set to {0.1,1076,1073}.

A.2. TetGS initialization

The reconstructed geometry is directly converted into tetra-
hedron grids, where we embed a different number of Gaus-
sians for each tetrahedron. The number of Gaussians as-
signed to each tetrahedron is based on its extracted face area
relative to the average size: faces larger than average are
assigned three Gaussians, while smaller faces receive one
Gaussian. The optimization of the embedded Gaussians G
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Figure 10. The architecture of the implicit reconstruction with
SDF field.

Table 3. Quantitative evaluation (test-set view) of our method
compared to 3DGS averaged on our collected dataset. 7K and
30K denote training iterations.

Method|Metric PSNRT SSIM T LPIPS |

3DGS-7K 26.12 0.933 0.195
3DGS-30K 27.31 0.941 0.175
Ours-7K 26.67 0.947 0.157
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Figure 11. Qualitative reconstruction comparison of TetGS against
3DGS.
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follows the original 3DGS method [27], where we apply
the pixel-wise reconstruction loss between the multi-view
renderings I and the training images I,; sampled from the
input monocular video:

L=1Li(I, 1)+ Assrar(I, Iz). (12)

To better capture high-frequency geometry and texture de-
tails, we perform TetGS initialization inside the subdivided
tetrahedron grids [56].

A.3. Reconstruction performance of TetGS against
3DGS

Comparison of TetGS with 3DGS is shown in Fig. 11 and
Tab. 3. TetGS demonstrates comparable reconstruction per-
formance to 3DGS, while achieving faster convergence of
Gaussian parameters, benefiting from the guidance of tetra-
hedral grids on 3D Gaussians’ spatial allocation.

B. Details of localized spatial adaptation

During the localized spatial adaptation of TetGS, we adopt
a view sampling strategy similar to [24], focusing on both
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Figure 12. An overview of the coarse texture generation stage.

global and local regions to calculate the dual spatial con-
straints. The resolution of the rendered normals is 512 X
512. We set the global and local text prompts y< and y* as
”photo of a man/woman wearing a ... garment” and "photo
of a ... garment”, respectively. For calculating the geomet-
ric guidance LgD s and L% ¢, we use a publicly available
normal-adapted Stable Diffusion V1.5 model [24] to gener-
ate more detailed geometry. We set the guidance scale at
50, and anneal the timestep ¢ from ¢ ~ 4/(0.02,0.80) into
t ~ U(0.02,0.20). Inspired by [26], during the early phase
of the spatial adaptation, we render normals on the coarse
tetrahedron grids with a resolution of 5122 to encourage fast
and large-scale deformation, and optimize detailed geome-
try within subdivided high-resolution tetrahedrons in later
steps of training.

C. Details of texture generation

With the reallocated editing Gaussians G°%* with already
learned spatial distribution, we propose to generate texture
within the editing regions in a coarse-to-fine manner. The
optimizer and training hyperparameters for G¢%* are shared
with the previous TetGS initialization stage. The guided
text prompts used for texture generation are shared with the
global prompt y© during the spatial adaptation stage.

C.1. Overview of coarse texture generation

We show an overview of the coarse texture generation stage
in Fig. 12, where we iteratively optimize trainable editing
Gaussians under the supervision of the few-shot inpainted
images. Detailed descriptions are included in Sec. 3.2.3 of
the main paper.

C.2. Diffusion guidance during texture generation

We use the publicly available SDXL-based ControlNet-
Plus [68] provided on Hugging Face for both normal-based
coarse texture inpainting and I2I augmentation, which is a

unified all-in-one ControlNet for image generation and edit-
ing. We integrate the normal branch and inpainting branch
for the normal-based inpainter to generate consistent texture
faithful to the underlying geometry, and apply the tile super
resolution branch for I2I augmentation that boosts local de-
tails while preserving the original contents. We generate
the inpainted and augmented images focusing at the editing
region with a resolution of 1024 x 1024.

D. Details of reference image-based editing

The proposed controllable TetGS and decoupled editing
strategy naturally support reference image-guided 3D vir-
tual try-on. We collect diverse types of garments from e-
commerce websites as the reference images. The corre-
sponding text prompts are generated by GPT-4 [1] with the
command “describe the color and style of the garment”.
We generate front and back-view try-on images Iy and I
separately using IDM-VTON [13], where we input the re-
constructed front or back rendering, the editing mask, the
reference garment, and its corresponding text description.
Since the individual and reference clothing remain consis-
tent for both views, the generated images inherently main-
tain a globally coherent style. Specifically, for the back
view, we add "backview” to the text prompt to enhance im-
age quality. The generated Iy and [, serve as the guidance
images for the appearance learning of the editing Gaussians,
which facilitate direct texture transfer of the specific gar-
ment styles.

We also apply additional geometric supervision L, on
during the localized spatial adaptation stage to recover faith-
ful geometric design (Eq.10 in the main paper). The loss
weights {\,orm, Amask } are set to {0.03,1.0}.

E. More edited results

We showcase more edited results in Fig. 15 and Fig. 16, in-
cluding both text-guided 3D editing and reference image-



based 3D virtual try-on. We demonstrate that our pro-
posed method can handle various editing scenarios, cov-
ering upper garments, lower garments, and dresses. Our
generated editable 3D avatars exhibit accurate region local-
ization, flexible geometric adaptation, and coherent render-
ings with high fidelity and photorealism comparable to real-
world individuals.

F. Experimental details

We compare our method with three 3D editing baselines:
GaussianEditor [60], DGE [11] and TIP-Editor [77], which
are state-of-the-art methods for text or image-guided 3D
scene editing. The selected baselines cover various ap-
proaches for 3D editing with Gaussian splatting, including
supervisions based on the iN2N [ 18], the SDS loss [47], and
multi-view consistent edited images.

GaussianEditor. GaussianEditor pioneers in 3D
scene editing with Gaussian Splatting. It facili-
tates two editing models, which utilize delta de-
noising score [20] (GaussianEditor-DDS) and Instruct-
NeRF2NeRF [18] (GaussianEditor-iN2N) as the generative
guidance for editing, respectively. Since GaussianEditor-
iN2N exhibits better editing performance across various
scenarios, we compare our method with GaussianEditor-
iN2N. To meet the instruction requirement of iN2N, we
convert our text prompts into the format of “put him/her
into ...” or "give him/her a ...”. To specify the local edit-
ing region with text-guided SAM [30], we manually pro-
vide segmentation prompts describing the interested area
for GaussianEditor’s semantic tracing process, which is the
same prompt that we use in our method to segment multi-
view masks for tetrahedron partitioning.

DGE. DGE is a representative 3DGS editing method that
uses a multi-view consistent 2D image editor for a more
stable generative supervision with spatial consistency. It
utilizes Instruct-pix2pix [5] as the underlying image edi-
tor and adopts spatiotemporal attention for view-consistent
editing following video editing methods. DGE is built on
the implementation of GaussianEditor, which also enables
local semantic tracing. Thus, the editing text prompts and
segmentation prompts of DGE can be shared with Gaus-
sianEditor.

TIP-Editor.  TIP-Editor enables text-and-image-guided
3DGS editing under the supervision of the SDS loss [47]
propagated by a personalized T2I model, where a Dream-
Booth model [52] is used for original scene personalization
and a LoRA layer [22] is added for editing content person-
alization. We use the collected reference garment images
for the LoRA training. To adapt to the concept-driven mod-
els used in TIP-Editor, we convert our editing text prompts
to meet the format of “a V; man/woman wearing a V5 gar-
ment”. For fair comparison on the localized editing task,
we manually set its editing bounding box close to the edit-
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Figure 13. Application on customized texture doodling.
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Figure 14. Application on continuous editing.
ing region localized by our method.

G. Applications

Texture doodling. Benefit from the controllable TetGS
representation which naturally supports decoupled geome-
try and appearance editing, we achieve customized texture
doodling by manually editing the front and back guidance
images as the supervision of the texture generation stage.
Users can paint any pattern to the guidance images, and the
modified texture can be directly transferred into the edited
3D avatar by optimizing Gaussian appearance under the su-
pervision of the painted images. We show an example in
Fig. 13, where we paint '"CVPR25’ and 'Hello’ on the front
and back views of the woman’s T-shirt.

Continuous editing. Our method can continuously edit the
source avatar, benefiting from our localized editing strat-
egy. Fig. 14 shows results of changing the upper garment
followed by the pants.

H. Limitations

Static human scene. Our method is proposed for static
human scenes and the performers should stay still during
the video capture. Dynamic portraits and obvious jittering
may bring confused surfaces and blurred textures, due to the
misalignment between multi-view observations on the pixel
level.

Extreme editing case. Our method may struggle to gener-
ate proper geometric changes when editing from loose gar-
ments (e.g., dresses) to tight garments, as the pose and shape
of the individual’s inner body are ambiguous in those situa-
tions. Adding estimated inner body prior during editing can
be a potential solution to mitigate this issue.
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Figure 15. More results on text-guided 3D avatar editing.
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Figure 16. More results on reference image-guided 3D avatar editing.
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