
Detecting Out-of-distribution through the Lens of Neural Collapse

Supplementary Material

7. Implementation Details
7.1. CIFAR-10
ResNet-18 For visualization in Fig. 2Left, Middle, we use
a CIFAR-10 classifier of ResNet-18 backbone trained with
cross-entropy loss. The classifier is trained for 100 epochs,
with the initial learning rate 0.1 decaying to 0.01, 0.001, and
0.0001 at epochs 50, 75, and 90 respectively. For experi-
ments in Table 1a, we use the pre-trained model provided
by the OpenOOD benchmark. And we refer readers to [49]
for their training recipe.
DenseNet-101 For experiments on CIFAR-10 Benchmark
presented in Table 9, we evaluate a CIFAR-10 classifier of
DenseNet-101 backbone. The classifier is trained following
the setups in [15] with depth L = 100 and growth rate k =
12.

7.2. CIFAR-100
DenseNet-101 For experiments on the CIFAR-100 Bench-
mark presented in Table 9, we evaluate a CIFAR-100 classi-
fier of the DenseNet-101 backbone. The classifier is trained
following the setups in [15] with depth L = 100 and growth
rate k = 12.

7.3. ImageNet
ResNet-50 For evaluation on ImageNet Benchmark in Ta-
ble 1a, we use the default ResNet-50 model trained with
cross-entropy loss provided by Pytorch. Training recipe
can be found at https://pytorch.org/blog/
how-to-train-state-of-the-art-models-
using-torchvision-latest-primitives/
ViT B/16 In Table 2, we use the PyTorch implementa-
tion and pre-trained checkpoint of ViT B/16, available
https://github.com/lukemelas/PyTorch-
Pretrained-ViT/tree/master.
Swin v2 In Table 2, we use the timm [45] implementa-
tion of Swin v2 as well as their pre-trained checkpoint
’swinv2 base window8 256’.

8. Alternatives Proximity Metrics
In this section, we validate that under alternative similar-
ity metrics, ID features also reside closer to weight vectors
and empirically compare the metrics. In addition to our pro-
posed pScore, we consider two standard similarity metrics,
cosine similarity and Euclidean distance. For cosine simi-
larity, we evaluate

cosScore =
(h→ µG) ·wc

↑h→ µG↑2↑wc↑2
. (7)

As for Euclidean distance, we first estimate the scaling

factor in Theorem 3.1 by ω̃c =
↑µc → µG↑2

↑wc↑2
. Based on the

estimation, we measure the distance between the centered
feature h→µG and the scaled weight vector corresponding
to the predicted class c as

distScore = →↑(h→ µG)→ ω̃cwc↑2. (8)
Same as pScore, the larger cosScore or distScore is, the
closer the feature is to the weight vector.

We evaluate in Table 7 OOD detection performance
using standalone pScore, cosScore, and distScore as
scoring function respectively. The experiments are evalu-
ated with AUROC under the same ImageNet setup as in
Section 4.1. We observe in Table 7, that across OOD
datasets, all three scores achieve an AUROC score > 50,
indicating that ID features reside closer to weight vectors
compared to OOD under either metric.

Furthermore, we observe that pScore outperforms both
cosScore and distScore. Comparing the performance
of pScore and cosScore, the superior performance of
pScore implies that ID features corresponding to the
classes with larger wc are less compact. This is in line
with the decision rule of the classifier that classes with
larger wc have larger decision regions. As for compari-
son against Euclidean distance based distScore, pScore
eliminates the need to estimate the scaling factor, which can
be error-prone before convergence, potentially leading to
performance degradation.

9. Baseline Methods
We provide an overview of our baseline methods in this ses-
sion. We follow our notation in Section 3. In the following,
a lower detection score indicates OOD-ness.

MSP [12] proposes to detect OOD based on the maxi-
mum softmax probability. Given the penultimate feature h
for a given test sample x, the detection score of MSP can
be represented as:

exp (wT
c h+ bc)∑

c→→C exp (w
T
c→h+ bc→)

, (9)

where c is the predicted class for x.
ODIN [21] proposes to amplify ID the OOD separation

on top of MSP through temperature scaling and adversarial
perturbation. Given a sample x, ODIN constructs a noisy
sample x→ from x. Denote the penultimate feature of the
noisy sample x→ as h→, ODIN assigns OOD score following:

exp ((wT
c h

→ + bc)/T)∑
c→→C exp ((w

↑T
c h→ + bc→)/T)

, (10)

Table 7. Ablation on proximity scores. AUROC score is reported (higher is better). ID features are closer to weight vectors than OOD
features (AUROC > 50) under all metrics. Across OOD datasets, our proposed pScore can better separate ID an OOD features than
distScore and cosScore.

SSB-hard NINCO iNaturalist Texture OpenImage-O
distScore 54.69 70.20 85.78 87.07 78.46
cosScore 65.82 79.92 90.43 91.36 89.00
pScore 66.81 80.20 92.67 91.87 90.51

where c is the predicted class for the perturbed sample
and T is the temperature. In our implementation, we set the
noise magnitude as 0.0014 and the temperature as 1000.

Energy [24] designs an energy-based score function
over the logit output. Given a test sample x as well as
its penultimate layer feature h, the energy based detection
score can be represented as:

→ log
∑

c→→C
exp (wT

c→h+ bc→). (11)

ReAct [38] builds upon the energy score proposed in
[24] and regularizes the score by truncating the penultimate
layer estimation. We set the truncation threshold at 90 per-
centile in our experiments.

Dice [37] builds upon the energy score proposed in [24].
Leveraging the observation that units and weights are used
sparsely in ID inference, [37] proposes to select and com-
pute the energy score over a selected subset of weights
based on their importance. We set a threshold at 90 per-
centile for CIFAR experiments and 70 percentile for Ima-
geNet experiments following [37].

ASH [8] builds upon the energy score proposed in [24].
Prior to the Energy score, ASH sorts each feature to find the
top-k elements, scales up the top-k elements, and sets the
rest to zero. We note that in addition to the cost of Energy,
ASH introduces a sorting cost of O(P log k), where P is
the penultimate layer dimension.

Scale [47] builds upon the energy score proposed in [24].
Prior to the Energy score, Scale sorts each feature to find
the top-k elements and based on the statistics, scales all ele-
ments in the feature. We note that in addition to the cost of
Energy, Scale also introduces a sorting cost of O(P log k),
where P is the penultimate layer dimension.

Mahalanobis On the feature space, [20] models the ID
feature distribution as multivariate Gaussian and designs a
Mahalanobis distance-based score:

max
c

→(ex → µ̂c)
T !̂↓1(ex → µ̂c), (12)

where ex is the feature embedding of x in a specific layer,
µ̂c is the feature mean for class c estimated on the training
set, and !̂ is the covariance matrix estimated over all classes
on the training set.

On top of the basic score, [20] also proposes two tech-
niques to enhance the OOD detection performance. The
first is to inject noise into samples. The second is to learn a
logistic regressor to combine scores across layers. We tune
the noise magnitude and learn the logistic regressor on an
adversarial constructed OOD dataset. The selected noise
magnitude is 0.005 in both our ResNet and DenseNet ex-
periments.

KNN [3] proposes to detect OOD based on the k-th near-
est neighbor distance between the normalized embedding
of the test sample zx/|zx| and the normalized training em-
beddings on the penultimate space. [3] also observes that
contrastive learning helps in improving OOD detection ef-
fectiveness.

GradNorm [17] extracts information from the gradient
space to detect OOD samples. Specifically, [17] defines the
OOD score function as the L1 norm of the gradient of the
weight matrix with respect to the KL divergence between
the softmax prediction for x and the uniform distribution.

↑εDKL(u↑softmaxf(x))

εW
↑1. (13)

ViM [43] proposes to integrate class-specific informa-
tion into feature space information by adding energy score
to the feature norm in the residual space of the training fea-
ture matrix. The detection score is designed to be:

ϑ

↓
hTRRh, (14)

where R ↔ R
P↔(P↓D) correspond to the residual after sub-

tracting the D→dimensional principle space. In the prepa-
ration stage, ViM requires evaluating the residual/null space
from the training data, which is computationally expensive
given the data volume. During inference, large matrix mul-
tiplication is required, resulting in a computational com-
plexity of O((P →D)2).

NECO is inspired by the ETF structure of Neural Col-
lapse to utilize feature subspace for OOD detection. The
detection score is designed to be

MaxLogit ↗
↓
hTPPh↓
hTh

, (15)

where P ↔ R
P↔d correspond to the d→dimensional princi-

ple space. In the preparation stage, NECO requires evaluat-

ing the residual/null space from the training data, which is
computationally expensive given the data volume. During
inference, large matrix multiplication is required, resulting
in a computational complexity of O((d)2 + P).

fDBD [22] proposes to detect OOD based on estimated
feature distance to decision boundaries of class c ↔ C be-
sides its predicted class f(x):

D̃f (h, c) =
|(wf(x) →wc)Th+ (bf(x) → bc)|∥∥wf(x) →wc

∥∥
2

, (16)

The detection score is designed as

1

|C|→ 1

∑

c→C, c ↗=f(x)

D̃f (h, c)

↑h→ µtrain↑2
. (17)

fDBD has time complexity O(|C| + P), where |C| is the
number of training classes and P is the penultimate layer
dimension.

10. Performance Boosting with Training-Time
Regularization

In this section, we investigate the compatibility of NCI
with training-time regularization algorithms for OOD de-
tection. On the CIFAR-10 benchmark, we evaluate NCI
performance on models trained with a training-time regu-
larization method, T2FNorm[35], as an example. We also
compare this with NCI performance on models trained us-
ing standard cross-entropy loss, as presented in Table 1.
In Table 8, we report the average AUROC across near
OOD datasets (CIFAR-100 and TIN) and far OOD datasets
(MNIST, SVHN, Texture, and Place365). We observe a per-
formance boost in both cases, demonstrating the compati-
bility of NCI as a post-hoc method with training-time regu-
larization algorithms. This also highlights the effectiveness
of combining NCI with training-time regularization for im-
proved OOD detection performance.

11. Additional Baselines
In the setup of Section 4.1, we further compare our NCI
with two additional baselines, GEN [25] and SHE [48]. On
the CIFAR-10 benchmark, SHE, GEN, and NCI achieve av-
erage AUROCs of 84.06, 90.30, and 90.46, respectively.
On the ImageNet benchmark, SHE, GEN, and NCI achieve
average AUROCs of 84.06, 86.20, and 88.56. Our result
further demonstrates NCI’s superior performance in miti-
gating generalization dependency across different classifi-
cation tasks.

In the setup of Section 4.2, we apply the CLIP-based
method MCM [29] (for vision-language models) to the vi-
sion models studied in that section. For MCM, we report
the best average AUROC scores achieved through temper-
ature sweeping across [0.01,0.1,1,10] for each model. On

ViT, MCM achieves an average AUROC of 93.60, whereas
NCI achieves 93.64. On Swin v2, MCM achieves an aver-
age AUROC of 77.73, whereas NCI achieves 80.94, demon-
strating NCI’s superior performance in this setup.

Table 8. Performance Boosting with Training-Time Regulariza-
tion. On the CIFAR-10 benchmark, we report the average AUROC
for Near and Far OOD. Experiments are conducted with ResNet-
18 trained using Cross-Entropy (CE) and T2FNorm.

Near OOD Far OOD
NCI after CE 88.79 91.30

NCI after T2FNorm 92.72 97.56

12. Evaluation on DenseNet
In addition to evaluation on ResNet and transformer-based
model in Section 4, we report the performance of our NCI
along with the baselines under AUROC and FPR95 across
OpenOOD benchmarks in Table 9.

13. The Prevalence of Neural Collapse across
Canonical Classification Tasks

The phenomenon of Neural Collapse, as established in the
seminal work by Papyan et al. [32] and corroborated by
subsequent studies [10, 30, 51, 53], widely exists across
canonical classification datasets and model architectures.
The prevalent occurrence of Neural Collapse forms a ro-
bust foundation for the design of our versatile OOD de-
tectors. To this end, we review the empirical evidence of
Neural Collapse across different datasets and model archi-
tectures in Figure 3, Figure 4, Figure 5, Figure 6, and Fig-
ure 7. Comparing CIFAR-10 and ImageNet behaviors with
ResNet backbone in Figure 7, we note that the clustering of
CIFAR-10 is more prominent than Imagenet, as indicated
by a higher ratio of between-class variance to within-class
covariance. Note that the figures and captions are sourced
from [32]. The definition and notation follow Section 3.

Table 9. Our OOD detectors achieves high AUROC and low FPR95 across CIFAR-10 and CIFAR-100 OOD benchmark on
DenseNet. → indicates that larger values are better and vice versa. Bold highlight the best results and underline denotes the 2nd and
3rd best results. We note that for DenseNet CIFAR-10 and CIFAR-100 classifiers, the discrepancy among existing methods is not as severe
as in the examples presented in the main paper. Nevertheless, our NCI achieves state-of-the-art performance or improves upon existing
methods, enhancing overall performance on average.

Methods
CIFAR-10 OOD Benchmark CIFAR-100 OOD Benchmark

Near OOD Far OOD
AVG

Near OOD Far OOD
AVGCIFAR-100 TIN MNIST SVHN Texture Place365 CIFAR-10 TIN MNIST SVHN Texture Place365

Evaluation under FPR95 ↓
MSP 36.46 31.51 20.79 19.02 39.17 32.69 29.04 65.62 59.33 61.30 74.09 78.97 62.53 66.97

ODIN 41.11 32.89 11.19 27.03 49.98 30.61 32.13 72.72 56.67 60.23 52.44 83.88 57.58 63.92
Energy 38.73 29.17 9.46 17.41 58.06 30.26 30.51 75.30 54.82 54.33 49.64 93.14 59.59 94.47
MDS 88.91 89.17 70.42 49.48 68.41 90.72 76.27 90.04 87.80 54.20 80.69 62.61 88.71 77.34
KNN 40.42 33.97 12.97 4.71 19.97 37.08 24.84 84.20 66.64 19.46 22.59 36.88 74.86 50.76
ViM 42.74 35.67 14.16 19.72 24.81 36.53 28.94 76.78 59.07 67.34 54.06 34.74 63.60 59.27

fDBD 38.87 31.29 10.32 6.70 18.32 31.30 22.80 68.17 53.08 43.03 45.80 35.66 62.90 51.44
GradNorm 72.67 55.37 8.57 21.94 86.36 63.97 51.48 94.07 84.61 41.99 36.54 97.98 81.32 72.75

NECO 38.51 29.12 9.68 16.91 56.29 29.94 33.82 75.16 54.63 54.18 49.73 92.07 59.34 63.91
ReAct 35.99 27.34 10.78 15.63 32.87 27.12 24.96 72.48 54.08 47.47 52.76 71.38 60.28 59.74
DICE 46.47 33.12 5.23 17.52 65.39 36.36 34.02 88.20 67.38 57.39 37.62 91.93 61.91 67.40
ASH 46.16 32.67 12.44 12.61 42.76 30.71 29.56 84.20 66.14 44.44 33.29 69.00 69.96 61.17
Scale 38.12 26.82 7.51 9.41 40.66 28.63 25.19 77.97 54.12 48.74 38.84 81.73 58.93 60.05

NCI (Ours) 36.08 29.50 8.44 5.67 16.22 30.83 21.12 84.99 57.33 29.71 25.99 50.16 64.40 52.10
Evaluation under AUROC ↑

MSP 87.97 89.52 92.79 93.30 87.29 89.25 90.02 74.11 76.74 74.42 68.40 69.99 75.14 73.14
ODIN 88.94 91.31 97.28 93.28 87.67 92.17 91.78 73.20 80.86 77.30 76.55 74.24 81.01 77.20
Energy 89.38 92.37 97.54 94.74 85.49 92.52 92.00 73.50 81.71 78.66 78.38 69.63 79.60 76.92
MDS 60.33 56.43 63.17 90.15 88.42 56.63 69.19 50.41 57.26 74.78 70.14 88.67 56.80 66.34
KNN 88.75 90.78 96.61 99.13 96.14 90.42 93.63 60.59 73.97 93.89 94.24 92.88 68.18 80.63
ViM 87.71 89.64 95.82 95.20 95.16 89.50 92.17 67.93 78.37 70.73 78.70 93.12 76.78 77.60

fDBD 89.98 92.04 97.52 98.34 95.58 92.17 94.27 75.83 82.37 84.46 85.05 90.26 77.79 82.63
GradNorm 78.47 85.19 97.91 95.85 83.14 83.18 87.29 51.75 64.64 86.41 89.63 73.16 66.61 72.03

NECO 89.43 92.38 97.44 94.93 85.87 92.53 92.10 73.77 81.76 78.83 78.58 70.40 79.62 77.30
ReAct 90.06 92.67 97.17 94.98 90.77 93.03 93.11 74.38 81.86 81.65 79.02 76.47 78.82 78.70
DICE 86.71 91.17 98.84 96.23 86.59 91.01 91.76 59.87 76.21 80.45 89.39 77.20 79.32 77.07
ASH 87.55 91.29 96.84 96.95 90.60 91.76 92.50 66.25 76.46 86.38 89.02 83.63 72.78 79.08
Scale 89.77 93.04 98.04 97.45 90.60 92.84 93.62 73.11 81.98 82.14 85.91 77.53 79.77 80.08

NCI (Ours) 90.31 92.29 97.93 98.67 95.87 91.86 94.49 69.84 80.75 91.42 92.12 88.46 76.99 83.26

Methods
CIFAR-10 OOD Benchmark

CIFAR-100
Evaluation under FPR95 ↓

MSP 48.00
ODIN 48.03

Energy 62.49
MDS 76.81
KNN 37.80
ViM 44.11
fDBD 37.12

GradNorm 62.12
NECO 48.87
ReAct 42.35
DICE 50.71
ASH 45.37
Scale 42.62

NCI w/o 37.85
NCI (Ours) 36.61

Evaluation under AUROC ↑
MSP 81.58
ODIN 84.49

Energy 84.46
MDS 67.77
KNN 87.13
ViM 84.89
fDBD 88.45

GradNorm 79.66
NECO 84.70
ReAct 85.91
DICE 84.42
ASH 85.79
Scale 86.85

NCI w/o 87.86
NCI (Ours) 88.88

Performance MSP NECO KNN ViM ASH Scale NCI (ours)
CIFAR-10 Latency 0.87 0.95 1.84 0.70 0.87 0.88 0.86
CIFAR-100 Latency 0.86 0.94 1.86 9.55 0.86 0.86 0.87

Avg AUROC 81.58 84.70 87.13 84.89 85.79 86.85 88.88

Performance KNN ViM ASH Scale NCI (ours)
Avg AUROC

Across All Benchmarks 86.06 85.96 81.24 86.8 88.57

Figure 3. (ref. Figure 2 in [32]) Train class means become equinorm. In each array cell, the vertical axis shows the coefficient of variation
of the centered class-mean norms as well as the network classifiers norms. In particular, the blue lines show Stdc(↑µc↓µG↑2)/Avg(↑µ↓
µG↑2) where {µc} are the class means of the last-layer activations of the training data and µG is the corresponding train global mean;
the orange lines showStdc(↑wc↑2)/Avg(↑wc↑2) where {wc} is the last-layer classifier of the c th class. As training progresses, the
coefficients of variation of both class means and classifiers decrease.

Figure 4. (ref. Figure 3 in [32]) Classifiers and train class means approach equiangularity. In each array cell, the vertical axis shows
the SD of the cosines between pairs of centered class means and classifiers across all distinct pairs of classes c and c→. Mathematically,
denote cosµ(c, c

→) =< µc ↓ µG,µ
→
c ↓ µG > /↑µc ↓ µG↑2↑µ→

c ↓ µG↑2 and cosw(c, c
→) =< wc,w

→
c > /↑wc↑2↑w→

c↑2, where
{wc}Cc=1, {µc}Cc=1, and µG are as in Figure 3. We measure Stdc,c→(cosµ(c, c

→)) (orange) and Stdc,c→(cosw(c, c
→)). As training progresses,

the SDs of the cosines approach zero, indicating equiangularity.

Figure 5. (ref. Figure 4 in [32]) Classifiers and train class means approach maximal-angle equiangularity. We plot in the vertical
axis of each cell the quantities Avgc,c→ | cosµ(c, c

→)+ 1/(C ↓ 1)| (blue) and Avgc,c→ | cosw(c, c
→)+ 1/(C ↓ 1)| (orange), where cosµ(c, c→)

and cosw(c, c
→) are as in Figure 4. As training progresses, the convergence of these values to zero implies that all cosines converge to

↓1/(C ↓ 1). This corresponds to the maximum separation possible for globally centered, equiangular vectors.

Figure 6. (ref. Figure 5 in [32]) Classifier converges to train class means. The formatting and technical details are as described in Section
3. In the vertical axis of each cell, we measure the distance between the classifiers and the centered class means, both rescaled to unit
norm. Mathematically, denote M̃ = Ṁ/↑Ṁ↑F where Ṁ = [µc ↓ µG, c = 1,, C] ↔ RP↑C is the matrix whose columns consist
of the centered train class means; denote W̃ = W /↑W ↑F where W ↔ RC↑P is the last-layer classifier of the network. We plot the
quantity ↑W̃ T ↓ M̃↑2F on the vertical axis. This value decreases as a function of training, indicating that the network classifier and the
centered-means matrices become proportional to each other (self-duality).

Figure 7. (ref. Figure 6 in [32]) Training within-class variation collapses. In each array cell, the vertical axis (log scaled) shows
the magnitude of the between-class covariance compared with the within-class covariance of the train activations. Mathematically, this is
represented by Tr(!W!+

B/C) where Tr(·) s the trace operator, !W is the within-class covariance of the last-layer activations of the training
data, !B is the corresponding between-class covariance, C is the total number of classes, and [·]+ is Moore–Penrose pseudoinverse. This
value decreases as a function of training—indicating collapse of within-class variation.

