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DiffFNO: Diffusion Fourier Neural Operator

Supplementary Material

1. Time Embedding001

As described in the main paper (Section 3.5), we incorpo-002
rate a sinusoidal time embedding e(t) to effectively condi-003
tion our neural network on the diffusion time step t during004
both training and inference. Here, we provide additional005
details of its implementation.006

To effectively condition our neural network on the dif-007
fusion time step t during both training and inference, we008
incorporate a sinusoidal time embedding e(t), inspired by009
positional encodings used in transformer architectures [22].010
This embedding captures temporal information across mul-011
tiple frequencies, enabling the network to learn temporal012
dynamics at different scales. e(t) is defined as:013

e(t) = [sin (ω1t) , cos (ω1t) , . . . , sin (ωDt) , cos (ωDt)] ,
(1)014

where D is the dimensionality of the embedding (we set015
D = 64), and the frequencies ωi are determined by an ex-016
ponentially increasing schedule:017

ωi = ωmin ·
(
ωmax

ωmin

) i−1
D−1

, i = 1, 2, . . . , D, (2)018

with ωmin = 1 and ωmax = 10,000. This configuration en-019
sures coverage of a wide range of frequencies, allowing the020
network to capture both rapid and slow temporal variations.021

e(t) is concatenated with the encoded image features v022
obtained from the convolutional encoder. This enriched fea-023
ture representation is then passed to both Weighted Fourier024
Neural Operator (WFNO) and Attention-based Neural Op-025
erator (AttnNO), as introduced in the main paper (Section026
3.3), ensuring that temporal information is available in sub-027
sequent processing stages.028

By conditioning on the time step t, the network can adapt029
its processing to different stages of the diffusion process.030
Early in the reverse diffusion (at higher t), the network031
focuses on reconstructing coarse structures from noisy in-032
puts, while at later stages (lower t), it refines fine details.033
The sinusoidal time embedding facilitates this adaptation by034
providing a rich temporal context, enhancing the network’s035
ability to model the evolution of image features over time.036

This approach is consistent with recent practices in dif-037
fusion models [10, 17], where time embeddings play a cru-038
cial role in guiding the denoising process. Incorporating the039
time embedding directly into the network’s input features040
allows DiffFNO to effectively leverage temporal informa-041
tion, contributing to its superior performance in arbitrary-042
scale super-resolution tasks.043

2. Implementation Details 044

In this section, we provide implementation details of 045
DiffFNO discussed in the main paper, including data prepa- 046
ration, network architecture specifics, training protocols, 047
and computational resources. 048

Data Preparation and Augmentation. We train our model 049
using the DIV2K dataset [1], which contains 800 high- 050
resolution (HR) images for training and 100 images for val- 051
idation. To generate training pairs, we extract random HR 052
patches of size 128 × 128 from the original images. The 053
low-resolution (LR) counterparts are obtained by downsam- 054
pling these patches using bicubic interpolation with scal- 055
ing factors uniformly sampled from ×1 to ×4. Specif- 056
ically, for each HR patch, we randomly select a scaling 057
factor s ∈ [1, 4] and down-scale the HR patch to size 058⌊
128
s

⌋
×
⌊
128
s

⌋
, ensuring that the LR patches align precisely 059

with the HR patches when upscaled. 060

To enhance the robustness and generalization capability 061
of our model, we apply extensive data-augmentation tech- 062
niques. These include random horizontal and vertical flips, 063
random rotations by 90◦, 180◦, and 270◦, and random crop- 064
ping within the HR patches. In addition, we normalize the 065
input LR images by scaling the pixel values to the range 066
[0, 1]. We use a batch size of 64 for all experiments. 067

Encoder (Lifting Layer). We employ two variants of the 068
encoder in our experiments: the baseline Enhanced Deep 069
Super-Resolution (EDSR) network [15] and the Residual 070
Dense Network (RDN) [25]. The encoder is responsible 071
for extracting rich feature representations from the LR in- 072
put. For EDSR, we use 16 residual blocks, each consisting 073
of two 3 × 3 convolutional layers with ReLU activations, 074
without batch normalization, as recommended for SR tasks 075
[15]. For RDN, we use a configuration with 16 residual 076
dense blocks, each containing 8 convolutional layers with a 077
growth rate of 64. The final feature map has 64 channels. 078

Weighted Fourier Neural Operator (WFNO). Our 079
WFNO, as introduced in the main paper (Section 3.2), con- 080
sists of 8 Fourier layers, each with 64 channels. Unlike 081
the standard FNO, we retain all Fourier modes and apply 082
our Mode Rebalancing to adaptively weight each frequency 083
component. The Fourier transforms are implemented us- 084
ing the Fast Fourier Transform (FFT), and the inverse trans- 085
forms are implemented using the Inverse FFT (IFFT). To 086
handle complex-valued operations, we separate the real and 087
imaginary parts throughout the network. The spectral con- 088
volution operations intrinsically upsample the features from 089
LR to HR spatial dimensions, enabling the network to cap- 090
ture global dependencies across the entire image. 091
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Attention-based Neural Operator (AttnNO). The At-092
tnNO is designed with 8 layers and 64 channels, employ-093
ing single-head self-attention mechanisms similar to those094
in [22]. Each layer consists of a self-attention module fol-095
lowed by a feed-forward network with a 3 × 3 convolu-096
tional layer and GELU activation [9]. The attention mech-097
anism allows the network to model local interactions and098
fine-grained details effectively. Features are upsampled to099
HR dimensions via bilinear interpolation before being pro-100
cessed by the attention layers.101
Gated Fusion Mechanism (GFM). To integrate the fea-102
tures from WFNO and AttnNO, we employ Gated Fusion103
Mechanism, a novel gating mechanism as described in the104
main paper (Section 3.3). Specifically, we concatenate the105
feature maps along the channel dimension and pass them106
through a 1×1 convolutional layer with 64 output channels,107
followed by a sigmoid activation function to produce the108
gating weights. These weights are then used to perform an109
element-wise weighted summation of the two feature maps.110
This mechanism allows the network to adaptively balance111
the contributions of global and local features.112

2.1. Adaptive Time-Step (ATS) ODE Solver113

Our ATS, as described in the main paper (Section 3.5), em-114
ploys the Runge-Kutta 4th-order (RK4) method with fixed115
step sizes determined by our adaptive time-step selection116
strategy in the main text). Unlike adaptive methods such117
as Runge-Kutta-Fehlberg (RK45), which adjust step sizes118
based on local error estimation, our approach uses a pre-119
computed sequence of time steps {ti}Ni=0 derived from the120
learned function ϕψ(t). This allows us to efficiently al-121
locate computational resources without the computational122
overhead of error estimation.123

The general update equation for advancing from time ti124
to ti+1 is given by:125

xi+1 = xi + hi · fθ(xi, ti), hi = ti+1 − ti, (3)126

where xi is the estimate of the image at time ti, hi is the127
step size from the adaptive schedule, and fθ(xi, ti) is the128
approximate drift function.129

To achieve higher accuracy, we use the RK4 method:130
131

k1 = fθ(xi, ti), (4)132

k2 = fθ

(
xi +

hi
2
k1, ti +

hi
2

)
, (5)133

k3 = fθ

(
xi +

hi
2
k2, ti +

hi
2

)
, (6)134

k4 = fθ (xi + hik3, ti + hi) , (7)135

xi+1 = xi +
hi
6
(k1 + 2k2 + 2k3 + k4). (8)136

where k1, k2, k3, and k4 are intermediate evaluations of the 137
drift function. The RK4 method effectively combines these 138
to compute a more accurate estimate of xi+1. 139

The benefits of RK4 in Our Context is threefold: (i) 140
Improved Accuracy: The higher-order integration reduces 141
truncation errors, crucial for maintaining image quality in 142
super-resolution tasks. (ii) Stability: RK4 is more stable 143
than lower-order methods with larger step sizes, allowing 144
us to use fewer steps without sacrificing performance. (iii) 145
Efficiency: Although RK4 requires multiple function eval- 146
uations per step, the total number of steps N is reduced, 147
leading to faster inference times. 148

By integrating the ODE with RK4 and using the adaptive 149
time steps from our learned schedule, our ATS efficiently 150
solves the reverse-time diffusion process, achieving high- 151
quality reconstructions with lower computational cost. 152

Training Protocol. We train our model using the Adam 153
optimizer [13] with β1 = 0.9 and β2 = 0.999. To stabi- 154
lize the initial training phase, we employ a learning rate 155
warm-up strategy, gradually increasing the learning rate 156
from 1× 10−6 to 3× 10−4 over the first 5 epochs [7]. Sub- 157
sequently, we use a cosine annealing learning rate sched- 158
uler with warm restarts [16], resetting every 50 epochs. The 159
learning rate decays from 3 × 10−4 to 1 × 10−6 following 160
a cosine curve in each cycle. We trained for 1, 000 epochs. 161

To prevent overfitting, we incorporate an early-stopping 162
mechanism based on the validation loss, with a patience of 163
50 epochs. Additionally, we apply weight decay regulariza- 164
tion with a coefficient of 1× 10−6. The loss function is the 165
mean squared error (MSE) between the predicted and true 166
score functions in the diffusion process. 167

Computational Resources. Training is conducted on a 168
Linux server equipped with an NVIDIA A100 GPU with 40 169
GB of memory. To maximize computational efficiency, we 170
utilize mixed-precision training with automatic loss scaling 171
provided by PyTorch’s AMP module [21]. This allows us 172
to train larger models and use larger batch sizes without ex- 173
ceeding memory constraints. 174

Implementation Specifics. Our model is implemented in 175
PyTorch [20]. We employ 16 worker threads for data load- 176
ing to ensure efficient utilization of GPU resources. All con- 177
volutional layers are initialized using the He initialization 178
[8], and the biases are initialized to zero. For reproducibil- 179
ity, we set fixed random seeds in all experiments. Code op- 180
timizations, including gradient checkpointing [4] are used 181
to reduce memory consumption when necessary. 182

Inference Details. During inference, we evaluate the model 183
on the LR images without any additional preprocessing. For 184
arbitrary scaling factors beyond the training range (e.g., ×6, 185
×8, ×12), the model operates without modification, lever- 186
aging the resolution-invariant properties of neural operators. 187
The ATS ODE solver dynamically adjusts the integration 188
steps based on the data characteristics, ensuring efficient 189
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and accurate reconstruction. We measure inference time by190
averaging more than 100 runs on the validation set.191

3. Hyperparameter Analysis192

In this section, we analyze the impact of key hyperparam-193
eters on the performance of DiffFNO reported in the main194
paper (Section 4). We perform ablation studies to under-195
stand the contributions of different components and settings196
to overall performance.197
Number of Fourier Modes. To evaluate the effect of198
retaining all Fourier modes with adaptive weighting ver-199
sus mode truncation, we conduct experiments with differ-200
ent numbers of modes retained in WFNO. Specifically, we201
compare the following settings:202

1. Mode Truncation: Retain only the lowest k frequency203
modes, with k ranging from 16 to 64.204

2. Full Modes with Uniform Weighting: Retaining all205
modes without adaptive weighting.206

3. Full Modes with Mode Rebalancing: Retaining all207
modes with our adaptive mode weighting mechanism.208

The results, summarized in Table 1, show that retaining209
all modes with adaptive weighting significantly outperforms210
mode truncation and full modes with uniform weighting.211
This highlights the importance of high-frequency compo-212
nents in super-resolution tasks and the effectiveness of our213
Mode Rebalancing in emphasizing critical frequencies.214

Method # Modes MR PSNR

Mode Trunc. 16 No 29.69
Mode Trunc. 32 No 29.91
Mode Trunc. 64 No 30.10
Full Modes All No 30.34
WFNO (ours) All Yes 30.88

Table 1. Impact of Number of Fourier Modes on PSNR (dB) at ×4
Scaling Factor on the DIV2K Validation Set

Gating Mechanism # Params ↓ PSNR

Simple (ours) 4K 30.88
Deep 50K 30.90
Attention-Based 120K 30.91

Table 2. Impact of Gating Mechanism Complexity on PSNR (dB)
at ×4 Scaling Factor on the DIV2K Validation Set

Gating Mechanism Complexity. We investigate the effect215
of the complexity of Gated Fusion Mechanism on the per-216
formance of the model. We tested different gating schemes:217

Tol PSNR Inference (s) ↓ # Steps

1× 10−4 30.83 0.85 25
1× 10−5 30.85 0.88 28
1× 10−6 (ours) 30.88 0.90 30
1× 10−7 30.88 0.93 33
1× 10−8 30.87 0.97 36

Table 3. Impact of Error Tolerance on PSNR (dB) and Inference
Time at ×4 Scaling Factor on the DIV2K Validation Set

1. Simple Gating: A single 1×1 convolution followed by 218
sigmoid activation (our default setting). 219

2. Deep Gating: A multi-layer perceptron (MLP) with 220
two hidden layers of sizes 128 and 64, respectively, 221
and ReLU activations. 222

3. Attention-Based Gating: Gating weights are computed 223
using a self-attention module. 224

The results presented in Table 2, indicate that increas- 225
ing the complexity of the gating mechanism does not lead 226
to significant performance gains. The simple gating mech- 227
anism suffices to effectively integrate global and local fea- 228
tures, which is beneficial for computational efficiency. 229

The marginal improvements obtained with more complex 230
gating mechanisms do not justify the much higher compu- 231
tational cost, supporting our choice of the simple 1×1 con- 232
volutional gating. 233

Error Tolerance in ATS ODE Solver. We examine the 234
effect of different error tolerances in the adaptive time- 235
stepping of the ATS ODE solver. We test absolute and rel- 236
ative error tolerances. The results, shown in Table 3, reveal 237
that tighter error tolerances lead to slight improvements in 238
PSNR at the cost of marginally increased inference time. 239

A tolerance of 1× 10−6 achieves the best balance between 240
reconstruction quality and computational efficiency, justify- 241
ing its use in our implementation. 242

Effect of Batch Size. We also investigate the impact of 243
different batch sizes on training stability and convergence. 244
We experiment with batch sizes of 16, 32, 64, 96, and 128. 245
Larger batch sizes lead to more stable training and slightly 246
faster convergence due to better gradient estimation. How- 247
ever, they require more GPU memory. A batch size of 64 248
provides a good trade-off between computational efficiency 249
and resource utilization on our hardware setup. 250

Learning Rate Scheduling. We compare different learning 251
rate scheduling strategies, including fixed learning rate, step 252
decay, and our chosen cosine annealing with warm restarts 253
[16]. The cosine annealing scheduler with warm restarts 254
yields better performance by allowing the optimizer to es- 255
cape local minima, furthering parameter space exploration. 256
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DIV2K [1], ×7.6

Bicubic Meta-SR [11] LTE [14] LIIF [5] LIT [3]

LMI [6] SRNO [23] HiNOTE [18] DiffFNO (ours) GT

Urban100 [12], ×11.2

Bicubic Meta-SR [11] LTE [14] LIIF [5] LIT [3]

LMI [6] SRNO [23] HiNOTE [18] DiffFNO (ours) GT

SET5 [2], ×2.4

Bicubic Meta-SR [11] LTE [14] LIIF [5] LIT [3]

LMI [6] SRNO [23] HiNOTE [18] DiffFNO (ours) GT

Urban100 [12], ×6.5

Bicubic Meta-SR [11] LTE [14] LIIF [5] LIT [3]

LMI [6] SRNO [23] HiNOTE [18] DiffFNO (ours) GT

Figure 1. Qualitative results with continuous SR scales. All models used the RDN [25] encoder, except HiNOTE [18] which uses its own.

Conclusion. The hyperparameter analysis confirms the ef-257
fectiveness of our design choices in DiffFNO. The retention258
of all Fourier modes with adaptive weighting, the simple yet259

effective gating mechanism, and the careful selection of er- 260
ror tolerances in the ODE solver all contribute to the supe- 261
rior performance of our model in arbitrary-scale SR. 262
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BSD100 [19], ×8

Bicubic Meta-SR [11] LTE [14] LIIF [5] LIT [3]

LMI [6] SRNO [23] HiNOTE [18] DiffFNO (ours) GT

Urban100 [12], ×6

Bicubic Meta-SR [11] LTE [14] LIIF [5] LIT [3]

LMI [6] SRNO [23] HiNOTE [18] DiffFNO (ours) GT

BSD100 [19], ×3

Bicubic Meta-SR [11] LTE [14] LIIF [5] LIT [3]

LMI [6] SRNO [23] HiNOTE [18] DiffFNO (ours) GT

DIV2K [1], ×12

Bicubic Meta-SR [11] LTE [14] LIIF [5] LIT [3]

LMI [6] SRNO [23] HiNOTE [18] DiffFNO (ours) GT

Figure 2. Qualitative results with integer SR scales. All models used the RDN [25] encoder, except HiNOTE [18] which uses its own.

4. More Qualitative Results263

To further demonstrate the efficacy of DiffFNO, we pro-264
vide a comprehensive set of additional qualitative results265

across various datasets and scaling factors in Fig. 1, 2, 266
and 3, spanning integer and continuous SR scales in and 267
out of the training distribution. These examples highlight 268
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SET14 [24], ×5

Bicubic Meta-SR [11] LTE [14] LIIF [5] LIT [3]

LMI [6] SRNO [23] HiNOTE [18] DiffFNO (ours) GT

BSD100 [19], ×8.8

Bicubic Meta-SR [11] LTE [14] LIIF [5] LIT [3]

LMI [6] SRNO [23] HiNOTE [18] DiffFNO (ours) GT

Urban100 [12], ×9

Bicubic Meta-SR [11] LTE [14] LIIF [5] LIT [3]

LMI [6] SRNO [23] HiNOTE [18] DiffFNO (ours) GT

DIV2K [1], ×12

Bicubic Meta-SR [11] LTE [14] LIIF [5] LIT [3]

LMI [6] SRNO [23] HiNOTE [18] DiffFNO (ours) GT

Figure 3. Additional qualitative results with out-of-distribution SR scales. All models used the RDN [25] encoder, except HiNOTE [18].

the model’s ability to preserve intricate textures, maintain269
sharp edges, and accurately reconstruct fine details in di-270
verse scenarios. Comparisons with state-of-the-art methods271

illustrate DiffFNO’s superior performance in handling com- 272
plex structures and reducing artifacts, thereby validating its 273
robustness and generalization capabilities. Through these 274
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visualizations, our aim is to offer deeper insights into the275
qualitative advantages of our approach beyond the quantita-276
tive metrics presented in the main paper.277
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