
Appendix
In the appendix, we provide the proof of Theorem 1,

the optimization on PUOT, SSLM and more experiential re-
sults.

A. Proof of Theorem 1

Theorem 1. Given the PUOT problem Jpuot as shown in
Eq.(2), it has the following dual form:

min
f ,g,ζ

τ N∑
i=1

ai exp

(
−fi + ζ

τ

)
−

H∑
j=1

bj(gj − ζ)


s.t. fi + gj + sij = Uij , sij ≥ 0,

(13)

where f , g, s and ζ denote Lagrange multipliers. Mean-
while sij ≥ 0 according to the KKT conditions. Moreover,
PUOT will be transformed into sample-reweighted optimal
transport problem according to its dual form:

min
π≥0

⟨U ,π⟩

s.t.



H∑
j=1

πij = ai exp

(
−f

∗
i + ζ∗

τ

)
N∑
i=1

πij = bj

(14)

Proof. Firstly, we suppose the source marginal probability
is defined asα and we have π1H = α. Note that we do not
need to know the exact value of α beforehand. We adopt
this optional constraint only for simplifying the following
deduction. Meanwhile the PUOT problem Jpuot can be
rewritten as below:

min
πij≥0

Jpuot = ⟨U ,π⟩+ τKL (π1H∥a)

s.t.

{
(Constraint) : π⊤1N = b

(Optional) : π1H = α

(15)

Then the Lagrange multipliers of PUOT can be shown as:
max

s≥0,f ,g,ζ
min
π≥0

J = τKL (π1H∥a) + ⟨f + ζ,π1H⟩

+ ⟨g − ζ, b⟩+ CSUOT

(16)

where f , g, ζ and s denote Lagrange multipliers. Note that
ζ can also be viewed as the translation invariant term [79].
Meanwhile CSUOT can be calculated as:

CSUOT =
∑
i,j

(Uij − fi − gj − sij)πij

= ⟨U − f ⊗ 1⊤
N − 1H ⊗ g⊤ − s,π⟩

= ⟨U − f ⊗ 1⊤
N − 1H ⊗ g⊤,π⟩

(17)

where sij ≥ 0 and sijπij = 0 according to the KKT con-
ditions. Reviewing the definition of the KL-Divergence is
given as KL (x∥z) =

∑D
d=1[xd log(xd/zd)− xd + zd], we

have the following the result:

∂

∂πij
(KL (π1H∥a)) = log

H∑
j=1

πij

ai

(18)

By further taking the differentiation on πij we have:

∂J
∂πij

=

τ log
H∑
j=1

πij

ai
+ fi + ζ

+ (Uij − fi − gj − sij)

= Uij + τ log

H∑
j=1

πij

ai
+ ζ − gj − sij = 0

(19)
Here we can reach the following conclusions:

H∑
j=1

πij = ai exp

(
−fi + ζ

τ

)
M∑
i=1

πij = bj

(20)

We can easily verify that the above equations satisfies the
condition Uij−fi−gj−sij = 0. Once we take the marginal
probabilities into KL-Divergence, we will obtain the results:
L = τKL (π1H∥a) + ⟨f + ζ,π1H⟩

= τKL

(〈
a, exp

(
−f + ζ

τ

)〉
∥a
)
+

〈
f + ζ,a exp

(
−f + ζ

τ

)〉
=

N∑
i=1

[
−τai exp

(
−fi + ζ

τ

)
+ τai

]
(21)

By neglecting the irrelevant constants, we can reach out the
final solution:

max
f ,g,ζ

−τ N∑
i=1

ai exp

(
−fi + ζ

τ

)
+

H∑
j=1

bj(gj − ζ)


s.t. fi + gj + sij = Uij , sij ≥ 0,

(22)
It is obvious to verify the equivalence between Eq.(22) and
Eq.(13) and we finish the proof of Theorem 1.

B. Optimization on PUOT
In this section, we will provide the optimization details on
solving PUOT via dealing with variables f and ζ in the fol-
lowing equation:

min
f ,ζ

LF = τ

N∑
i=1

ai exp

(
−fi + ζ

τ

)

−
H∑
j=1

(
inf

k∈[N]
(Ukj − fk)− ζ

)
bj .

(23)

Known Sample
No.0-69

Unknown Sample No.70-99

Known Sample
No.0-29

Unknown Sample No.30-99

෡𝑸 ෡𝑸𝜏 = 0.1

𝜏 = 1

𝜏 = 0.1

𝜏 = 1

(a) The marginal probability estimation and weight barcode establishment
when the ratio of unknown sample is 70%

(b) The marginal probability estimation and weight barcode establishment
when the ratio of unknown sample is 30%

Marginal Probability on
Target Samples

Marginal Probability on
Target Samples

Target

Different value of 𝝉

Target

Target
(Unknown)

Different value of 𝝉

0.01 1010.1 0.01 1010.1

Target
(Unknown)

Figure 8. The illustration on the proposed weight barcode estimation with toy examples. We first sample 100 source/target data samples
and set 30% or 70% of target data samples from unknown categories. Then we adopt marginal probability estimation to obtain the results
of target weights. Finally we calculate and visualize the result of Q̂ to distinguish the unknown target samples.

Algorithm 2 The optimization procedure on PUOT
Input: U : The cost distance matrix; τ : Hyper parameters;
a, b: Given the source and target marginal probabilities.
Procedure:

1: Initialize t = 0, ζ = 0, f (0) = (0, 0, · · · , 0).
2: repeat
3: Adopt WFPI to optimize f as:

f (ℓ+1)
s = κς

log (as)− ζ

τ
− log

 H∑
j=1

bje
−Usj/ς

Mj


= Us

(
f
(ℓ)
1 , · · · , f (ℓ)s , · · · , f (ℓ)N

)
4: Update ζ using f via Eq.(29).
5: Update t = t+ 1.
6: until Converge
7: Return: The optimal ζ∗ and f∗.

To further accelerate the optimization process, we consider
to make a smooth approximation on replacing inf(·) as

infk∈[N][Ukj − fk] ≈ −ς log[
∑N

k=1 e
fk−Ukj

ς]. Note that
ς > 0 denotes the balanced hyper parameters among the
accuracy and function smoothness. In the experiment, we
set ς = 0.01 for the calculation. Then we can obtain the
following optimization problem:

min
f ,ζ

APUOT = τ exp

(
− ζ
τ

) N∑
i=1

ai exp

(
−fi
τ

)

+

H∑
j=1

[
ς log

[
N∑

k=1

exp

(
fk − Ukj

ς

)]
+ ζ

]
bj

(24)
Therefore, we further propose Wasserstein Fixed-Point
Iteration (WFPI) method to optimize PUOT. That is,
we take the differentiation with respect to fi and set
∂APUOT/∂fi = 0as:

exp

(
fi
ς

) H∑
j=1

 bj exp
(
−Uij

ς

)
N∑

k=1

exp
(

fk−Ukj

ς

)
 = ai exp

(
−fi + ζ

τ

)
.

(25)

Specifically, f (ℓ+1)
s can be updated at the ℓ-th iteration:

f (ℓ+1)
s = κς

log (as)− ζ

τ
− log

 H∑
j=1

bj exp
(
−Usj

ς

)
Mj


= Us

(
f
(ℓ)
1 , · · · , f (ℓ)s , · · · , f (ℓ)N

)
(26)

where κ = τ/(τ + ς) and Mj =
∑N

k=1 exp

(
f
(ℓ)
k −Ukj

ς

)
.

The convergence of the WFPI algorithm can be guaranteed
by considering the following results:

∂Us

∂f
(ℓ)
1

= − κς
H∑
j=1

bj exp
(
−

Usj
ς

)
Mj

∂

∂f
(ℓ)
1

 H∑
j=1

bj exp
(
−Usj

ς

)
Mj



=
κ

H∑
j=1

bj exp
(
−

Usj
ς

)
Mj

H∑
j=1

bj exp
(
−Usj

ς

)
Mj

·
exp

(
f
(ℓ)
1 −U1j

ς

)
Mj


< 1

(27)
Likewise we can obtain:

N∑
i=1

∣∣∣∣∣ ∂Us

∂f
(ℓ)
i

∣∣∣∣∣ = κ
H∑
j=1

bj exp
(
−

Usj
ς

)
Mj

H∑
j=1

 bj exp
(
−Usj

ς

)
N∑

k=1

exp

(
f
(ℓ)
k −Ukj

ς

)


=
τ

τ + ς
< 1

(28)
That is, we can obtain the infinity-norm of Jacobian matrix
is smaller than 1 and it indicates the convergence of WFPI.
Finally, further optimize ζ by considering ∇ζLF = 0.
Specifically, we can obtain the exact value of ζ via:

ζ = τ

log(N∑
i=1

ai exp

(
−fi
τ

))
− log

 H∑
j=1

bj


(29)

Apparently, we can easily verify that
∑N

j=1 bj =∑N
i=1 ai exp(−(fi + ζ)/τ) are satisfied during each iter-

ations and indicates the importance of ζ in the optimization

process. The optimization algorithm of PUOT is provided
in Alg.2. In summary, exp(−(fi + ζ)/τ) can be regarded
as the reweighted coefficient for the target data samples.
Then we can further utilize weight barcode establishment to
determine target unknown samples accordingly. The demo
code1 for PUOT is provided:

1 def puot(cost, src_weight, trg_weight,
2 tau, eps=0.01, iter=50, tol=1e-6):
3 num_src = cost.shape[0]
4 f = np.ones((num_src,)) / num_src
5 zeta = 0
6 var = tau * eps / (tau + eps)
7 for e in range(iter):
8 prev_f = f
9 temp = (f.reshape(-1,1)-cost)/eps

10 den = np.sum(np.exp(temp), axis=0)
11 term = np.exp(-cost/eps) / den
12 sum_term = np.sum(term *

trg_weight.reshape(1,-1),
axis=1)

13 v1 = np.log(src_weight)-zeta/tau
14 f = var*(v1-np.log(sum_term))
15

16 exp_f = np.exp(-f/tau)
17 src_sum = np.sum(src_weight*exp_f)
18 trg_sum = np.sum(trg_weight)
19 zeta = tau*np.log(src_sum/trg_sum)
20 if np.linalg.norm(prev_f-f)<=tol:
21 break
22 return src_weight*np.exp(-(f+zeta)/tau)

Listing 1. Python code for PUOT

C. Optimization on SSLM

In this section, we will provide the optimization details on
solving SSLM with variables ψ and ϕ as shown below:

max
ψ,ϕ

LS =

Nkno∑
i=1

ψiâi +

H∑
j=1

ϕj b̂j −
ϵ

2

Nkno∑
i=1

H∑
j=1

[
ψi + ϕj − Ĉij

ϵ

]2

+

,

(30)
We adopt Block Coordinate Descend (BCD) to optimize the
above problem. Specifically, we first optimize ψ as:

∂LS

∂ψi
= 0 ⇒ Ψ(ψi) =

H∑
j=1

[
ψi − (Ĉij − ϕj)

]
+
= ϵâi

(31)
After that we optimize ϕ as:

∂LS

∂ϕj
= 0 ⇒ Φ(ϕj) =

Nkno∑
i=1

[
ϕj − (Ĉij − ψi)

]
+
= ϵ̂bj

(32)

1Colab link for PUOT

Finally we can further calculate the optimal solution of
γ(l+1) at the l-th iteration as shown:{

γ
(l+1)
ij = max(0, [ψ

(l)
i + ϕ

(l)
j + ϵγ

(l)
ij − Cij]/ϵ)

Ĉ
(l+1)
ij = Cij − ϵγ

(l)
ij

(33)

After several iterations, we can obtain the optimal solution
on ψ and ϕ, and then we can obtain the optimal solution on
γ accordingly. The demo code1 for SSLM is provided:

1 def SSLM(cost, src_weight, trg_weight,
2 eps, n_iters=50):
3 import ot
4 Ns = cost.shape[0]
5 Nt = cost.shape[1]
6 pi = np.ones([Ns ,Nt]) / (Ns * Nt)
7 for i in range(n_iters):
8 pi = ot.smooth.smooth_ot_dual(
9 src_weight,

10 trg_weight,
11 cost - eps * pi,
12 reg = eps/2,
13 reg_type=’l2’)
14 return pi

Listing 2. Python code for SSLM

D. More Experiential Results
D.1. Setup

Office-31 [77] is the commonly-used computer vision
dataset for domain adaptation with 4,652 images from three
different domains: Amazon (A), Webcam (W) and DSLR
(D). We adopt the same set of known and unknown classes
following previous works [46]. We conduct the openset do-
main adaptation on the following six tasks: A→W, A→D,
D→W, W→D, D→A and W→A.

Office-Home [84] is a standard benchmark dataset
which includes 15,500 images in 65 object classes in office
and home settings, forming four dissimilar domains: Artis-
tic images (Ar), Clip Art (Cl), Product images (Pr) and
Real-World (Rw). We select the first 25 classes as known
and the rest 26-65 classes as unknown in alphabetic order
following [46]. We conduct 12 openset tasks on Office-
Home thorough evaluations: Ar↔Cl, Ar↔Pr, Ar↔Rw,
Cl↔Pr, Cl↔Rw, and Pr↔Rw.

VisDA-2017 [70] consists of two domains with Syn-
thetic and Real with 12 classes in common. Synthetic has
152,397 synthetic 2D renderings of 3D objects and Real has
55,388 real images. We construct openset domain adapta-
tion task in VisDA-2017 following [46].

Digits is the classical dataset for digit classification
which contains three standard digit classification datasets:
MNIST [40], USPS[31] and SVHN [67]. Each dataset

1Colab link for SSLM

Figure 9. The illustration on Sparse Sample-Label Matching (SSLM) in sparse label assignment with toy examples. Sinkhorn and tradition
ℓ2-norm solvers could easily reach smooth but dense output solutions. Our proposed SSLM method can reach more sparse matching
solution for better performance.

consists of 10 classes of digits, ranging from 0 to 9.
We construct three open set domain adaptation tasks as
SVHN→MNIST, MNIST→USPS and USPS→MNIST
following the same evaluation protocol [78].

