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6. More comparison with SOTA methods
Compared with frame-based methods. Several frame-
based SOTA methods [16, 40, 44] focus on achieving high-
resolution optical flow estimation. They primarily perform
pixel matching or refinement across multiple spatial reso-
lutions in frames. Unlike frames, event data provides high
temporal resolution, necessitating efficient method to cap-
ture continuous motion features. In this context, our multi-
scale difference layer effectively handles temporal dynam-
ics by leveraging temporal feature differences with low
computations and can refine RAFT-like networks. Using
publicly available source code under the same training set-
tings, our method outperforms these methods in accuracy
and efficiency on DSEC (in Tab. 8), highlighting its impor-
tance in event-based flow estimation.
Compared with event-based methods. We present accu-
racy vs. complexity in Fig. 5 to facilitate comparison. Our
EDCFlow achieves higher performance as well as signifi-
cant reductions in computational overhead over the state-
of-the-art methods.

Parameters (M)

en
d-

po
in

t-
er

ro
r (

px
)

0.71

0.73

0.75

0.77

0.79

2.30

2.0 4.0 6.0 8.0 10.0 12.0 14.0

TMA

EV-FlowNet

E-RAFT

Ours

IDNet-8

IDNet-4

50 G

200 G

500 G

1200 G

EPE vs. Parameters and MACs on DSEC 

Figure 5. End-point-error (px) on DSEC vs. computational com-
plexity (MACs: G) and model size (Parameters: M). All models
are trained on DSEC, and tested with one NVIDIA 4090 GPU. The
computational complexity corresponding to the size of the circle
is shown in the legend in the lower right corner.

7. More Visualizations
Qualitative Results on MVSEC. Fig. 7 presents a qual-
itative comparison of our method with other methods on
outdoor day1 sequence of the MVSEC [45]. Compared
to DSEC dataset [11], MVSEC has lower resolution and
sparser events (especially at dt = 1), and it lacks occlusion
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Figure 6. Illustration of motion feature maps. (a) Event data.
(b) Optical flow ground truth. (c) Optical flow estimated by our
method. (d) Correlation motion feature map. (e) Multi-scale tem-
poral difference motion feature map fused with multi-scale atten-
tion. (f) The final motion feature map is aggregated from the dif-
ference motion feature and correlation motion feature.

and moving objects handling for its ground truth, making
the data quality relatively poor. Despite this, compared to
other methods, our approach holds superior performance at
both dt = 1 and dt = 4, capturing clearer motion bound-
aries. This confirms that our method demonstrates greater
adaptability across diverse data distributions and scenes.
Motion Feature Maps. To better illustrate the complemen-
tarity between the difference maps and correlation maps,
we present in Fig. 6 the multi-scale temporal feature differ-
ences of adjacent feature maps and the motion features en-
coded from the cost volume on the DSEC dataset. The dif-
ference motion features exhibit strong responses in textured
areas but are noisy, while the correlation motion features
may produce blurred boundaries due to matching ambigui-
ties. By adaptively fusing these two features, the response
at motion boundaries can be enhanced, resulting in high-
quality optical flow.
Flow Error Maps. To analyze the advantages and lim-



Method EPE AE 1PE 2PE 3PE Param (M) MACs (G) Runt. (ms)
DIP [44] 3.06 10.95 77.8 46.6 27.5 5.4 590 92

GMFlow+ [40] 6.55 7.40 94.1 77.9 63.6 4.6 223 141
CCMR [16] GPU out of memory (> 40GB) 11.6 2255 -

Ours 0.72 2.65 10.0 3.6 2.1 2.5 247 39

Table 8. Compared with frame-based SOTA methods.

itations of the model, we visualize the EPE distributions
in Fig. 8, where the error for each pixel is represented as the
square root error between the estimated and ground truth
flows, shown using heatmaps. Since the ground truth of
the DSEC dataset’s test set is not publicly available, we use
zurich city 05 b and zurich city 11 c from the training set
as the test set for error analysis, while the remaining train-
ing samples are used to train the model. Our model can
estimate accurate flow in most scenarios, particularly for
complex textured objects like trees. In failure cases, how-
ever, our model encounters significant estimation errors in
the spatial edge regions. This may be due to two reasons:
first, the sparse events in these regions lack sufficient tex-
ture information, making it difficult for feature differences
to encode motion boundaries and for the cost volume to re-
solve matching ambiguities; second, pixels at the spatial
edges cannot aggregate enough contextual information to
encode accurate motion features. These issues could be ad-
dressed by fusing images and leveraging multiple preceding
and subsequent event streams.

8. More Ablation Studies
More ablation studies are also conducted on the DSEC
dataset [11].
Iterations. Some existing methods [5, 35, 39] achieve bet-
ter optical flow results through iterative refinement strate-
gies, particularly for small objects with large displacements.
The results in Tab. 9 show that as the number of iterations
increases, the flow results become stable and reach a con-
vergent state. The performance stabilizes when the num-
ber of iterations reaches 6. Moreover, excessive iterations
may cause overfitting or oscillation around a local optimum,
such as ours-8 6/12 in Tab. 7.

iterations EPE AE 1PE 2PE 3PE
2 0.86 3.11 13.8 5.3 3.1
4 0.77 2.85 11.5 4.2 2.4
6 0.72 2.65 10.0 3.6 2.1
8 0.72 2.64 10.1 3.6 2.1

Table 9. Iterations. The number of iterative refinements.

Event splitting. The time windows and temporal bins de-
termine the input’s temporal resolution and the number of
input channels, respectively. The results in Tab. 10 show
that a small value of g leads to performance degradation

due to the loss of intermediate motion information. When
the g is set to 5 and B to 3, sufficient continuous motion fea-
tures are captured, achieving good performance. Increasing
the window count further achieves comparable performance
but introduces additional computational overhead.

g, B EPE AE 1PE 2PE 3PE Param (M) MACs (G)
1, 15 0.79 2.80 11.9 4.4 2.9 2.2 182
3, 5 0.75 2.74 10.7 3.9 2.3 2.3 209
5, 3 0.72 2.65 10.0 3.6 2.1 2.5 247

15, 1 0.72 2.68 10.0 3.5 2.0 2.5 322

Table 10. Event splitting. g represents the number of time win-
dows. B denotes the number of time bins.

Optical flow estimation resolution. Different resolutions
capture varying degrees of detail, offering distinct lev-
els of granularity in the information provided. As shown
in Tab. 11, flow estimation performs best at 1/4 resolution.
We attribute this to the fact that the feature difference strat-
egy is more effective in capturing local detail, making it
more accurate at higher resolutions, while at 1/8 resolu-
tion, some detail is inevitably lost. Although the 1/2 res-
olution retains more detail, its tolerance to noise decreases,
and the correlation features upsampled by two times remain
too coarse to robustly enhance the final motion feature rep-
resentation. Additionally, this resolution struggles to handle
large displacements effectively.

Resolution EPE AE 1PE 3PE MACs (G) Param (M)
8 0.78 2.82 12.7 2.5 216 6.8
4 0.72 2.65 10.0 2.1 247 2.5
2 0.77 2.89 10.8 2.5 288 1.1

Table 11. Optical flow estimation resolution. The resolutions of 8,
4, and 2 represent flow computed at 1/8, 1/4, and 1/2 resolution of
the input, respectively.

r EPE AE 1PE 3PE MACs (G) Param (M)
1 0.72 2.65 10.0 2.1 247 2.5
2 0.74 2.65 10.4 2.2 244 2.5
8 0.75 2.73 11.0 2.2 241 2.5

w/o 0.73 2.67 10.2 2.2 244 2.5

Table 12. Reduction ratio in the multi-scale temporal difference
layer.

Feature dimension reduction ratio. In Tab. 12, we explore
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Figure 7. Qualitative results on the outdoor day1 sequence on MVSEC [45]. Please zoom in for details.
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Figure 8. Visualization of error distribution maps. We present three high-quality flow estimation results with smaller EPE (the first three
columns) and one failure case with larger EPE (the last column). The color bar indicates the per-pixel square root error magnitude, with
darker colors representing larger errors.

the impact of r in the multi-scale temporal difference layer,
with “w/o” indicating conv1 removed. We set r = 1 to bal-

ance accuracy and computations. When compared to “w/o”,
setting r = 1 brings imporvements in accuracy by leverag-



ing conv1 to enhance feature interaction. Since the channel
number is 64 in our experiment, the effect of r on computa-
tion is marginal. For larger channel numbers, r > 1 can be
used to balance accuracy and computation.

9. Future Work
In our work, we assume linear motion within short time
windows (20 ms for DSEC and 10/40 ms for MVSEC),
which shows good empirical performance and lower com-
putational complexity. However, investigating alternative
motion models, such as estimating higher temporal reso-
lution intermediate flows to capture complex trajectories,
could be an interesting direction for future research. Fur-
thermore, event-image fusion-based optical flow estima-
tion represents a promising research direction. By effec-
tively combining the high temporal resolution and motion-
capturing capability of event streams with the rich appear-
ance and texture information provided by images, the accu-
racy and robustness of optical flow estimation can be signif-
icantly enhanced.
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