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Supplementary Material

A. Overview

The supplementary material is organized into the following
sections:

• Sec. B. Detailed training and inference algorithms.
• Sec. C. Qualitative evaluation of the proposed edge atten-

tion mechanism.
• Sec. D. Comprehensive qualitative comparisons against

state-of-the-art method.
• Sec. E. Evaluation of model generalization on unseen

datasets.
• Sec. F. Reconstruction results demonstrated across the

entire Tallinn city.

B. Training and Inference Details

B.1. Training Details
Training Algorithm. Algorithm 1 provides the pseudo-
code of EdgeDiff training procedure. EdgeDiff first diffuse
the ground truth wireframe into a distribution of random
gaussian noise. The model is then trained to reverse this
process, allowing it to learn the wireframe structure of the
point clouds.

Training Loss. Following PBWR [1], we employ a com-
prehensive loss function that combines L1 distance loss for
midpoint and component regression (Lmid, Lcomp), cross-
entropy loss for confidence scores and quadrant classifica-
tion (Lcon, Lquad), edge similarity loss (Lsim) for structural
refinement, and mean squared error loss (Lattn) for edge at-
tention supervision:

L =λmidLmid + λcompLcomp + λconLcon+

λquadLquad + λsimLsim + λattnLattn

(1)

where we set λmid = 5, λcomp = 1, λcon = 1, λquad = 2,
λsim = 2, and λattn = 5 to balance the trade-off between
geometric accuracy and structural consistency in the wire-
frame reconstruction process.

B.2. Inference Details
Inference Algorithm. The EdgeDiff inference process fol-
lows a denoising paradigm that transforms Gaussian noise
into precise wireframes through iterative refinement, as de-
tailed in Algorithm 2.

Edge Renewal. At each inference step, the network gen-
erates Neval edges with corresponding confidence scores.
We implement an adaptive filtering mechanism that retains

Algorithm 1 EdgeDiff Training

def train_loss(point_clouds, gt_wireframes):
"""
point_clouds: [B, N, 7] # points with RGB and

intensity
gt_wireframes: [B, M, 6] # M edges, each with

midpoint-offset
# B: batch size
# N: number of points
# M: number of edges
"""

# Encode point cloud features and edge_attention
enc_xyz, f_embed = point_embedding(point_clouds)
f_enc = point_encoder(f_embed)
pred_attn = edge_attention_generation(f_embed)
gt_attention = gt_edge_attention_generation(

gt_wireframes)

# Pad gt wireframes to N_train
wf = pad_wireframe(gt_wireframes) # [B, N_train, 6]

# Signal scaling
wf = wf * scale # scale=2.0 as default

# Corrupt wireframes with noise
t = randint(0, T) # timestep
eps = normal(mean=0, std=1) # noise: [B,

num_queries, 6]
wf_noised = sqrt(alpha_bar[t]) * wf + \
sqrt(1 - alpha_bar[t]) * eps

# Predict
wf_pred = edge_aware_denoising(wf_noised, f_enc, t,

query_xyz, pred_attn)

# Calculate losses
loss = wireframe_loss(wf_pred, gt_wireframes) + \

attention_loss(pred_attn, gt_attention)

return loss

edges whose confidence scores exceed a threshold, while re-
placing lower-confidence edges with new parameters sam-
pled from a gaussian distribution.

Sampling Strategy. We analyzed the impact of sam-
pling strategy on reconstruction quality, as shown in Fig. 1.
Our experiments demonstrate that while using either DDIM
[2] or edge renewal mechanism alone leads to marginal per-
formance degradation in EF1 metrics, their combination
yields superior results. Notably, our analysis reveals that
optimal performance is achieved with single-step denois-
ing, with additional iterations yielding negligible improve-
ments. This efficiency can be attributed to three key design
choices: the edge attention mechanism that provides strong
geometric priors, the midpoint-offset parameterization that
simplifies optimization, and the edge renewal mechanism
that ensures high-quality predictions. These architectural
decisions collectively demonstrate the effectiveness of our
noise-to-wireframe paradigm.



Algorithm 2 EdgeDiff Sampling

def infer(point_clouds, sampling_steps, T):
"""
point_clouds: [B, N, 7] # points with RGB and

intensity
sampling_steps: number of sample steps
T: total diffusion steps
"""

# Encode point cloud features and edge attention
enc_xyz, f_embed = point_embedding(point_clouds)
f_enc = point_encoder(f_embed)
pred_attn = edge_attention_generation(f_embed)

# Initialize with random noise
wf_t = normal(mean=0, std=1) # [B, N_eval, 6]

# Sample timesteps uniformly
times = reversed(linspace(-1, T, sampling_steps))
time_pairs = list(zip(times[:-1], times[1:]))

for t_curr, t_next in zip(time_pairs):
# Edge-aware denoising prediction
wf_pred = edge_aware_denoising(wf_t, f_enc,

t_curr, query_xyz, pred_attn)

# DDIM update step
wf_t = ddim_step(wf_t, wf_pred, t_curr, t_next)

# Edge renewal
wf_t = renew_edges(wf_t)

return wf_pred

C. Visualization of Edge Attention
We present comprehensive visualizations of edge attention
weights in Fig. 2. Our supervised edge attention mecha-
nism effectively captures geometric features along build-
ing edges, showing strong correlation with ground truth
patterns. This enables accurate wireframe reconstruction
while preserving structural integrity. In contrast, unsu-
pervised attention weights exhibit scattered patterns, in-
adequately highlighting edge-relevant features. The clear
distinction between attention maps empirically validates
our design. Furthermore, improved reconstruction quality
through supervised attention underscores the importance of
edge-aware feature learning in wireframe denoising.

D. Qualitative Comparison with SOTA
Fig. 3 presents extensive visual comparisons against PBWR
[1] on diverse building examples. Our EdgeDiff demon-
strates superior performance by accurately capturing fine-
grained roof details while maintaining global structural co-
herence. The edge-aware denoising process enables robust
reconstruction of complex roof structures and preserves
building topology, particularly in densely connected re-
gions. These qualitative results validate the effectiveness of
our noise-to-wireframe paradigm in generating high-fidelity
building reconstructions from point clouds.

E. Model Generalization
To further evaluate the generalization capability of our
model, we perform extensive experiments on additional

Figure 1. Evaluation of the contributions of the DDIM and Edge
renewal mechanism on performance.

datasets, including Hiiumaa, Keila, Loksa, and Sillamäe.
These datasets contain only point clouds and lack ground
truth wireframe annotations. Hence, we apply the model
trained on the Building3D dataset [3] to these datasets with-
out fine-tuning. The qualitative results, shown in Fig. 4,
Fig. 5, Fig. 6, and Fig. 7, demonstrate that our method gen-
eralizes effectively to unseen datasets.

F. Large-scale Reconstruction Results of
Tallinn City

In Fig. 8, we showcase large-scale building reconstruction
results on the Tallinn city dataset [3], demonstrating EdgeD-
iff’s capability to reconstruct complex architectural struc-
tures across an extensive urban region comprising 36,084
buildings. We present close-up views of a specific region,
followed by detailed visualization of an individual build-
ing, including its point cloud, predicted wireframe, and pre-
dicted mesh representation.
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Figure 2. Comparison of supervised and unsupervised edge attention weights in wireframe reconstruction. Blue indicates lower weights,
while red represents higher weights. Default settings of EdgeDiff (c) use supervised attention (e).
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Figure 3. Qualitative comparison with the existing state-of-the-art method.
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Figure 4. Visualization of model generalization. Qualitative results on the Hiiumaa dataset.
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Figure 5. Visualization of model generalization. Qualitative results on the Keila dataset.
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Figure 6. Visualization of model generalization. Qualitative results on the Loksa dataset.
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Figure 7. Visualization of model generalization. Qualitative results on the Sillamae dataset.
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Figure 8. Reconstruction of Tallinn city buildings with EdgeDiff.
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