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A. Derivation of formulas
A.1. Forward Process
The forward process (i.e., diffusion process) is defined as the SDE in Eq. (3). The goal of this section is to derive the form of
p0t
(
x(t) | x(0),µ

)
, which is also called the perturbation kernel. We can rewrite the form of Eq. (3) into:

dx = −f(t)(µ− x)dt+ g(t)dωt, (20)

whose solution has already been solved in IR-SDE (Eq. (6) in [34]), as

p0t
(
x(t) | x(0),µ

)
= N

(
x(t);mt, vtI

)
, (21)

mt = µ+
(
x(0)− µ

)
e−θ̄0:t , vt =

∫ t

0

g(ξ)
2
e−2θ̄ξ:tdξ, (22)

where θ̄s:t =
∫ t

s
−f(ξ)dξ. Thus,

mt = µ+
(
x(0)− µ

)
exp

(
−
∫ t

0

−f(ξ)dξ
)

= µ+
(
x(0)− µ

)
s(t), (23)

v(t) =

∫ t

0

g(ξ)
2
exp

(
−2
∫ t

ξ

−f(z)dz
)
dξ =

∫ t

0

[
g(ξ) exp

(∫ t

ξ

f(z)dz

)]2
dξ (24)

=

∫ t

0

[
g(ξ) exp

(∫ t

0

f(z)dz −
∫ ξ

0

f(z)dz

)]2
dξ =

∫ t

0


 g(ξ)

exp
(∫ ξ

0
f(z)dz

)
2

exp

(
2

∫ t

0

f(z)dz

)dξ (25)

= exp

(
2

∫ t

0

f(z)dz

)∫ t

0

(
g(ξ)

s(ξ)

)2

dξ = s(t)
2
σ(t)2, (26)

where s(t) and σ(t) is detailed in Eq. (7). Hence, the perturbation kernel can be rewritten as:

p0t
(
x(t) | x(0),µ

)
= N

(
x(t);µ+ s(t) (x (0)− µ) , s(t)2σ(t)2I

)
(27)

= s(t)−dN

(
x(t)

s(t)
;x(0) +

1− s(t)

s(t)
µ, σ(t)2I

)
(28)

= s(t)−dp̃0t (x̃(t) | x̃0(t)) , (29)

where d is the dimension of x, x̃(t) is equal to
x(t)

s(t)
, and x̃0(t) along with p̃0t is defined in Eqs. (5) and (6). Eq. (29) is the

same as Eq. (4).

A.2. Backward Process
As we have mentioned in Sec. 3.1, our forward SDE in Eq. (3) can be viewed as a special case of Eq. (1) proposed by [48],
by defining f(x, t) = f(t)(x − µ). Thus, the backward ODE can also be seen as a special case of Eq. (2). By substituting
the relationship between f(x, t) and f(t) into Eq. (2), we can acquire:

dx =

[
f(t)(x− µ)− 1

2
g(t)

2∇x log pt(x)

]
dt, (30)



where we simplify x(t) to x. According to Eq. (7), we can derive the relationship between s(t), σ(t) and f(t),g(t). This has
already been demonstrated in the Eqs. (28) and (34) in [21], which is

f(t) =
ṡ(t)

s(t)
, g(t) = s(t)

√
2σ̇(t)σ(t), (31)

where ṡ(t) and σ̇(t) are the derivatives of s(t) and σ(t), respectively. We can rewrite the form of Eq. (30) by substituting
Eq. (31) into it:

dx =

[
ṡ(t)

s(t)
(x− µ)− s(t)2σ̇(t)σ(t)∇x log pt(x)

]
dt. (32)

Since we define x̃(t) =
x(t)

s(t)
. We can obtain

x(t) = s(t)x̃(t). (33)

We can differentiate both sides of Eq. (33):

ds(t)

dt
x̃(t) + s(t)

dx̃(t)

dt
=

dx(t)

dt
, (34)

ṡ(t)x̃(t)dt+ s(t)dx̃(t) = dx(t). (35)

Substitute Eq. (35) and Eq. (33) into Eq. (32):

ṡ(t)x̃(t)dt+ s(t)dx̃(t) =

[
ṡ(t)

s(t)
(s(t)x̃(t)− µ)− s(t)2σ̇(t)σ(t)∇x log pt(x)

]
dt, (36)

s(t)dx̃(t) =

[
−
ṡ(t)

s(t)
µ− s(t)2σ̇(t)σ(t)∇x log pt(x)

]
dt, (37)

dx̃(t) =

[
−

ṡ(t)

s(t)2
µ− s(t)σ̇(t)σ(t)∇x log pt(x)

]
dt, (38)

The term∇x log pt(x) is the score function, which is predicted by the denoiser Dθ mentioned in Sec. 3.2. However, we aim
to use x̃(t) rather than x(t) as the input of Dθ. Hence, the relationship between∇x̃(t) log pt

(
x̃(t)

)
and∇x log pt(x) should

be clarified. This is demonstrated as follows:

∇x̃(t) log pt
(
x̃(t)

)
= ∇x(t)/s(t) log

[
s(t)−dpt

(
x(t)

s(t)

)]
(39)

= s(t)∇x(t) log
[
pt
(
x(t)

)]
. (40)

Eq. (40) is based on pt
(
x(t)

)
= s(t)−dpt

(
x(t)

s(t)

)
, which can be derived the same as Eq. (29). Eq. (40) can be substituted

into Eq. (38):

dx̃(t) =

[
−

ṡ(t)

s(t)2
µ− σ̇(t)σ(t)∇x̃(t) log pt

(
x̃(t)

)]
dt, (41)

which aligns with Eq. (8), with∇x̃(t) log pt
(
x̃(t)

)
= sθ

(
x̃(t)

)
.

Next, we illuminate the relationship between ∇x̃(t) log pt
(
x̃(t)

)
and the output of Dθ. Therefore, we can directly use the

output of Dθ within the sampling process. Generally, we hope that when Dθ is trained to be ideal, the discrepancy between
the predicted distribution and the target distribution of x̃(t) is minimized. This can be achieved using the score matching
method [17, 48]. Specifically, we regulate the score function calculated from the output of Dθ to match the theoretical target
score function. In other words, the training goal is to let ∇x̃(t) log qt

(
x̃(t)

)
= ∇x̃(t) log pt

(
x̃(t)

)
, where we denote the

target score function as ∇x̃(t) log qt
(
x̃(t)

)
and the target distribution of x̃(t) in the sampling process as qt

(
x̃(t)

)
. Since the



integrals of qt
(
x̃(t)

)
and pt

(
x̃(t)

)
over the domain of x̃(t) are both equal to one, qt

(
x̃(t)

)
= pt

(
x̃(t)

)
can be derived from

∇x̃(t) log qt
(
x̃(t)

)
= ∇x̃(t) log pt

(
x̃(t)

)
. The training goal can be achieved by optimizing the Fisher divergence [18, 38],

which is indicated by DF . Assuming we are at diffusion step t, DF is given by:

DF

(
qt
(
x̃(t)

)
∥ pt

(
x̃(t)

))
= Eqt(x̃(t))

[
1

2

∥∥∇x̃(t) log pt
(
x̃(t)

)
−∇x̃(t) log qt

(
x̃(t)

)∥∥2] . (42)

Thereby, we aim to demonstrate that optimizing Eq. (42) is theoretically equivalent to optimizing our practical loss function
L
(
Dθ, σ(t)

)
in Eq. (9). Therefore, we can use Eq. (9) instead of Fisher divergence. We select the training objective in Eq. (9)

to align with current generative DMs [14, 21, 42], given that this objective has been proven effective [21]. [51] proposes
another elegant and scalable form of Eq. (42):

DF

(
qt
(
x̃(t)

)
∥ pt

(
x̃(t)

))
= Eqt(x̃(t),x̃0(t))

[
1

2

∥∥∇x̃(t) log pt
(
x̃(t)

)
−∇x̃(t) log qt

(
x̃(t) | x̃0(t)

)∥∥2]+ const, (43)

where const is a constant, and Eqt(x̃(t),x̃0(t)) is the expectation of the joint distribution of x̃(t) and x̃0(t). Here, qt
(
x̃(t) |

x̃0(t)
)

represents the conditional pdf of x̃(t) given x̃0(t). As we have the relationship between x̃(t) and x̃0(t), the concrete
form of∇x̃(t) log qt

(
x̃(t) | x̃0(t)

)
can derived as:

∇x̃(t) log qt
(
x̃(t) | x̃0(t)

)
(44)

= ∇x̃(t) logN
(
x̃(t); x̃0(t), σ(t)

2I
)

(45)

= ∇x̃(t) log

[
(2π)

− d
2
(
det
(
σ(t)2I

) )− 1
2 exp

(
−1

2

(
x̃(t)− x̃0(t)

)T (
σ(t)2I

)−1(
x̃(t)− x̃0(t)

))]
(46)

= ∇x̃(t)

(
−1

2

(
x̃(t)− x̃0(t)

)T (
σ(t)2I

)−1(
x̃(t)− x̃0(t)

))
(47)

= −
x̃(t)− x̃0(t)

σ(t)2
, (48)

which, along with∇x̃(t) log pt
(
x̃(t)

)
= sθ

(
x̃(t)

)
and Eq. (6), can be substituted into Eq. (43):

DF

(
qt
(
x̃(t)

)
∥ pt

(
x̃(t)

))
= Eqt(x̃(t),x̃0(t))

1
2

∥∥∥∥∥sθ(x̃(t))+ x̃(t)− x̃0(t)

σ(t)2

∥∥∥∥∥
2
+ const (49)

= Eqt(x̃(t),x̃0(t))

12
∥∥∥∥∥∥∥∥∥sθ
(
x̃(t)

)
+

x̃(t)− x(0)−
1− s(t)

s(t)
µ

σ(t)2

∥∥∥∥∥∥∥∥∥
2+ const (50)

=
1

2
Eqt(x̃(t),x̃0(t))

 1

σ(t)4

∥∥∥∥∥σ(t)2sθ(x̃(t))+ x̃(t)−
1− s(t)

s(t)
µ− x(0)

∥∥∥∥∥
2
+ const. (51)

To achieve the alignment between the optimization results of Eq. (51) and the training objective in Eq. (9), we can unify the
forms of the two objectives. Concretely, if we let

σ(t)2sθ
(
x̃(t)

)
+ x̃(t)−

1− s(t)

s(t)
µ = Dθ

(
x̃(t);σ(t); c

)
, (52)

then we obtain:

sθ
(
x̃(t)

)
=

1

σ(t)2

(
Dθ

(
x̃(t);σ(t); c

)
+

1− s(t)

s(t)
µ− x̃(t)

)
, (53)

which formally establishes the relationship between the score function sθ
(
x̃(t)

)
and the denoiser output Dθ

(
x̃(t);σ(t); c

)
,

the same as Eq. (10). We can substitute Eq. (52) into Eq. (51):

DF

(
qt
(
x̃(t)

)
∥ pt

(
x̃(t)

))
=

1

2
Eqt(x̃(t),x̃0(t))

[
1

σ(t)4
∥∥Dθ

(
x̃(t);σ(t); c

)
− x(0)

∥∥2]+ const. (54)



Given that qt (x̃(t), x̃0(t)) = qt
(
x̃(t) | x̃0(t)

)
qt
(
x̃0(t)

)
, we can acquire Eqt(x̃(t),x̃0(t)) [·] = Eqt(x̃0(t))Eqt(x̃(t)|x̃0(t)) [·].

According to Eq. (6), x̃0(t) depends entirely on x(0), µ and s(t). At any fixed diffusion step t, s(t) is a specific determined
value. Furthermore, x(0) and µ are drawn from the data distribution. Thus, we can denote the distribution of x̃0(t) as pdata,
as indicated in Eq. (9). As for qt

(
x̃(t) | x̃0(t)

)
, according to Eq. (5), x̃(t) equals x̃0(t) + n, where n ∼ N

(
0, σ(t)2I

)
.

Hence, given x̃0(t), x̃(t) ∼ N
(
x̃0(t), σ(t)

2I
)
. Based on the aforementioned analysis, we can rewrite Eq. (54) as:

DF

(
qt
(
x̃(t)

)
∥ pt

(
x̃(t)

))
=

1

2
Ex̃0(t)∼pdataEx̃(t)∼N (x̃0(t),σ(t)2I)

[
1

σ(t)4
∥∥Dθ

(
x̃(t);σ(t); c

)
− x(0)

∥∥2]+ const (55)

=
1

2
Ex̃0(t)∼pdataEn∼N (0,σ(t)2I)

[
1

σ(t)4
∥∥Dθ

(
x̃0(t) + n;σ(t); c

)
− x(0)

∥∥2]+ const, (56)

which aligns with the practical training objective in Eq. (9), as x(0) = x̃0(0), differing only by the coefficients
1

2
and

1

σ(t)2
. Note that the coefficients

1

2
and

1

σ(t)2
both remain fixed at any given t. Consequently, at diffusion step t, optimiz-

ing DF

(
qt
(
x̃(t)

)
∥ pt

(
x̃(t)

))
is theoretically equivalent to optimizing L

(
Dθ, σ(t)

)
in Eq. (9), enabling us to directly use

L
(
Dθ, σ(t)

)
rather than DF

(
qt
(
x̃(t)

)
∥ pt

(
x̃(t)

))
as the training objective.

By substituting Eq. (53) into Eq. (41), we obtain the ODE in Eq. (11), which is practically used in our sampling process.

A.3. Preconditioning
In this proof, we use t to represent the diffusion step and l to denote the time or the time point, in order to distinguish between
these two key concepts. Note that l is an integer, while t is continuous. Substituting Eq. (13) into Eq. (18) yields:

L = Eσ,x̃0(t),n

[
λ (σ)

∥∥∥∥mean
({

cskip (σ) x̃
l(t)
}L

l=1

)
+ cout (σ)Fθ − x(0)

∥∥∥∥2
2

]
, (57)

= Eσ,x̃0(t),n

λ(σ)
∥∥∥∥∥∥mean

{cskip(σ)

(
x(0) +

1− s

s
µl + nl

)}L

l=1

+ cout(σ)Fθ − x(0)

∥∥∥∥∥∥
2

2

 , (58)

= E

λ (σ) cout (σ)
2︸ ︷︷ ︸

effective weight

∥∥∥∥∥∥∥∥∥∥∥
Fθ︸︷︷︸

network output

−
1

cout (σ)

x(0)−mean

{cskip (σ)

(
x(0) +

1− s

s
µl + nl

)}L

l=1


︸ ︷︷ ︸

effective training target

∥∥∥∥∥∥∥∥∥∥∥

2

2

 , (59)

where we omit the bracketed arguments in the functional notations s(t), σ(t) and Fθ

({
cin (σ) x̃

l(t)
}L

l=1
; cnoise (σ) ; c

)
for

notational simplicity. The Eσ,x̃0(t),n is simplified to E in Eq. (59). Note that while we have different corrupted images µl

across various time points, there is only a single target x(0).
Adhering to the EDM framework [21], we impose a variance normalization constraint on the training inputs of Fθ(·),

enforcing unit variance preservation at each temporal point l:

Varx(0),µl,nl

[
cin (σ)

(
x(0) +

1− s

s
µl + nl

)]
= 1, (60)

cin (σ)
2 Varx(0),µl,nl

(
x(0) +

1− s

s
µl + nl

)
= 1, (61)

Thus,

cin (σ) =

√√√√√√
1

Varx(0),µl,nl

(
x(0) +

1− s

s
µl + nl

), (62)



where nl is independent of x(0) and x(0) +
1− s

s
µl. However, x(0) and x(0) +

1− s

s
µl are obviously not independent.

Hence, we can calculate the variance of x(0) +
1− s

s
µl + nl:

Varx(0),µl,nl

(
x(0) +

1− s

s
µl + nl

)
(63)

= Varx(0),µl,nl

(
x(0) +

1− s

s
µl

)
+ Varnl(nl) (64)

= Varx(0) (x (0)) + Varµl

(
1− s

s
µl

)
+ 2Cov

(
x (0) ,

1− s

s
µl

)
+ Varnl(nl) (65)

= Varx(0) (x (0)) +

(
1− s

s

)2

Varµl

(
µl
)
+ 2

1− s

s
Cov

(
x (0) ,µl

)
+ Varnl(nl), (66)

where Cov

(
x (0) ,

1− s

s
µl

)
is the covariance of x (0) and

1− s

s
µl. Since nl is drawn from N (0, σ2I), its variance

Varnl(nl) is equal to σ2. We denote Varx(0) (x (0)) as σ2
data. For simplicity in derivation, we assume:

Assumption A.1. The variance of corrupted images at different time points remains constant, i.e. ∀l ∈ [1, L],Varµl

(
µl
)
=

σ2
mu.

Assumption A.2. The covariance between corrupted images at different time points and the target image x(0) remains
constant, i.e. ∀l ∈ [1, L],Cov

(
x (0) ,µl

)
= σcov.

Under the two assumptions, we can simplify Eq. (66) into

Varx(0),µl,nl

(
x(0) +

1− s

s
µl + nl

)
= σ2

data +

(
1− s

s

)2

σ2
mu + 2

(
1− s

s

)
σcov + σ2. (67)

According to Eq. (62) and Eq. (67), we can get the value of cin (σ) as

cin (σ) =
1√√√√σ2

data +

(
1− s

s

)2

σ2
mu + 2

(
1− s

s

)
σcov + σ2.

(68)

Eq. (68) is the same as Eq. (14), if denoting k =
1− s

s
.

Following EDM [21], we rigorously enforce unit variance normalization on the effective training target in Eq. (59):

Varx(0),µl,nl

 1

cout (σ)

x(0)−mean

{cskip (σ)

(
x(0) +

1− s

s
µl + nl

)}L

l=1

 = 1, (69)

which leads to

cout (σ)
2
= Varx(0),µl,nl

[
x(0)−

cskip (σ)

L

L∑
l=1

(
x(0) +

1− s

s
µl + nl

)]
, (70)

cout (σ)
2
= Varx(0),µl,nl

[(
1− cskip (σ)

)
x(0)−

(
1− s

s

)
cskip (σ)

L

L∑
l=1

µl −
cskip (σ)

L

L∑
l=1

nl

]
, (71)



where nl is independent of both x(0) and µl, and it is also independent across different time points. Therefore,

cout (σ)
2
= Varx(0),µl

[(
1− cskip (σ)

)
x(0)−

(
1− s

s

)
cskip (σ)

L

L∑
l=1

µl

]
+

(
cskip (σ)

L

)2

Varnl

(
L∑

l=1

nl

)
, (72)

cout (σ)
2
= Varx(0),µl

[(
1− cskip (σ)

)
x(0)−

(
1− s

s

)
cskip (σ)

L

L∑
l=1

µl

]
+

(
cskip (σ)

L

)2 L∑
l=1

(
Varnlnl

)
, (73)

cout (σ)
2
= Varx(0),µl

[(
1− cskip (σ)

)
x(0)−

(
1− s

s

)
cskip (σ)

L

L∑
l=1

µl

]
+

cskip (σ)
2

L
σ2. (74)

Note that

Varx(0),µl

[(
1− cskip (σ)

)
x(0)−

(
1− s

s

)
cskip (σ)

L

L∑
l=1

µl

]
(75)

=
(
1− cskip (σ)

)2
σ2

data +

(
1− s

s

)2(
cskip (σ)

L

)2

Varµl

(
L∑

l=1

µl

)
(76)

− 2
(
1− cskip (σ)

)1− s

s

cskip (σ)

L
Cov

(
(x(0)) ,

L∑
l=1

µl

)
. (77)

We make another assumption for further derivations, as follows:

Assumption A.3. The corrupted images exhibit complete mutual dependence across all time points, i.e. Varµl

(∑L
l=1 µ

l
)
=

Varµl

(
Lµl

)
= L2σ2

mu.

While this assumption is simplistic, as corrupted images at different times are not identical, it remains a valuable approx-
imation for our derivation. This is because images corrupted at different time points can still exhibit significant similarity.
The ablation experiments in Sec. 4.3 further demonstrate the effectiveness of the preconditioning method based on this as-
sumption. Using our three assumptions and Eq. (77), we can derive:

Varx(0),µl

[(
1− cskip (σ)

)
x(0)−

(
1− s

s

)
cskip (σ)

L

L∑
l=1

µl

]
(78)

=
(
1− cskip (σ)

)2
σ2

data +

(
1− s

s

)2(
cskip (σ)

L

)2

L2σ2
mu − 2

(
1− cskip (σ)

)1− s

s

cskip (σ)

L
Lσcov (79)

=
(
1− cskip (σ)

)2
σ2

data +

(
1− s

s

)2

cskip (σ)
2
σ2

mu − 2
(
1− cskip (σ)

)
cskip (σ)
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Substitute Eq. (80) into Eq. (74), as follows:

cout (σ)
2
=
(
1− cskip (σ)

)2
σ2

data +

(
1− s

s

)2

cskip (σ)
2
σ2

mu − 2
(
1− cskip (σ)

)
cskip (σ)

1− s

s
σcov +

cskip (σ)
2

L
σ2. (81)

Following EDM [21], we then obtain the optimal cskip (σ) by minimizing cout (σ), so that the errors of Fθ can be amplified as
little as possible. This is expressed as:

cskip (σ) = argmincskip(σ)cout (σ) = argmincskip(σ)cout (σ)
2
, (82)

which is obtained by selecting cout (σ) ≥ 0, without loss of generality. To solve the optimal problem in Eq. (82), we set the



derivative w.r.t. cskip (σ) to zero:

0 =
dcout (σ)

2

dcskip (σ)
, (83)
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Thus, we can acquire the value of cskip (σ):
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σ2

data +
1− s

s
σcov

σ2
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which aligns with Eq. (15) with k =
1− s

s
.

By substituting Eq. (86) into Eq. (81), we can attain the value of cout (σ):

cout (σ) =
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which is the same as Eq. (16) since k =
1− s

s
.

The value of cnoise (σ) is the same as that in EDM [21], which is obtained based on experiments:

cnoise (σ) =
1

4
ln (σ) . (88)

A.4. Sampling
We present a detailed pseudocode for our stochastic sampler with arbitrary s(t) and σ(t) in Algorithm 3, which can be
regarded as an extension of Algorithm 2. In Algorithm 3, we individually sample the initial states, i.e. xl

0, at each time
point, from line 2 to line 3. Notably, The corrupted images µl differ across different time points. In other words, µl1 ̸= µl2

if l1 ̸= l2 and l1, l2 ∈ [1, L]. From line 4 to line 15, we loop N times to denoise
{
xl
0

}L
l=1

. Specifically, from line 5 to
line 8, we compute the value of γi, and γi is used in line 9 to increase the noise level by adjusting ti to t̂i. Lines 11 to 12
involve performing stochastic perturbation on xl

0 at each time point l, using Eq. (19). In line 14, we use Eq. (11) to evaluate
dx̃(t)

dt
at diffusion step t̂i and time point l. The denoiser Dθ takes images from all time points, i.e.

{
x̂l
i

}L

l=1
, as its input,

since it can denoise sequential images in parallel as discussed in Sec. 3.3. By integrating information across time points,
Dθ achieves improved results, aided by the TFSA module discussed in Sec. 3.3. We then apply an Euler step in line 15 to

calculate the next-step image xl
i+1. Finally, we use a mean operator to reduce the temporal dimension of

{
x̂l
N

}L

l=1
, where{

x̂l
N

}L

l=1
∈ RL×C×H×W and xN ∈ RC×H×W , omitting batch size for clarity.

In Algorithm 3, there are seven key hyperparameters: N , Stmin, Stmax, Snoise, Schurn, σmin, and σmax, as mentioned
in Sec. 3.5. Here we add some details. The Stmin and Stmax define the range for the stochastic sampling steps. Concretely, as



Algorithm 3 Our stochastic sampler with arbitrary s(t) and σ(t).

1: procedure STOCHASTICSAMPLER(Dθ, {µl}Ll=1, c)
2: for l ∈ {1, 2, · · · , L} do ▷ Individually sample the initial state for L time points

3: sample xl
0 ∼ N (

1− s(t0)

s(t0)
µl, σ(t0)

2I) ▷ xl
0 is a noisy corrupted image

4: for i ∈ {0, 1, · · · , N − 1} do ▷ Repeat the sampling step N times
5: if ti ∈ [Stmin, Stmax] then ▷ [Stmin, Stmax] define the stochastic sampling range

6: γi ←
Schurn

N
▷ Schurn and N determine γi

7: else ▷ For ti outside the range [Stmin, Stmax], use deterministic sampling
8: γi ← 0 ▷ Setting γi = 0 leads to deterministic sampling

9: t̂i ← ti + γiti ▷ γi regulates the extent of stochastic perturbation
10: for l ∈ {1, 2, · · · , L} do ▷ Individually perform denoising for L time points
11: sample ϵi ∈ N

(
0, S2

noiseI
)

▷ Sample the noise for stochastic perturbation

12: x̂l
i ← xl

i +

(
1− s(t̂)

s(t̂i)
−

1− s(ti)

s(ti)

)
µl +

√
σ(t̂i)

2 − σ(ti)
2
ϵi ▷ Use Eq. (19) for stochastic perturbation

13: for l ∈ {1, 2, · · · , L} do ▷ Individually take Euler step for L time points

14: dl
i ← −

ṡ(t̂i)

s(t̂i)
2µ−

σ̇(t̂i)

σ(t̂i)

[
Dθ

({
x̂l
i

}L

l=1
;σ(t̂i); c

)
+

1− s(t̂i)

s(t̂i)
µ− x̂l

i

]
▷ Use Eq. (11)

15: xl
i+1 ← x̂l

i + (ti+1 − t̂i)d
l
i ▷ Take an Euler step from t̂i to ti+1

16: xN = mean
(
{xl

N}Ll=1

)
▷ Use the mean operator to collapse the temporal dimension and calculate the final result

17: return xN ▷ The result is a single restored image

shown from line 5 to line 8, if ti falls outside [Stmin, Stmax], γi is set to 0. As a result, t̂i is set to ti (line 9), leading to x̂l
i = xl

i,
thus reducing the stochastic sampler to its deterministic counterpart. If ti is within [Stmin, Stmax], regular stochastic sampling
occurs. Schurn, along with N , controls the value of γi in line 6, influencing the extent of stochastic perturbation in line 12.
This approach is improved from the stochastic sampler in EDM [21] by removing the γi upper limit (

√
2− 1 in EDM). Since

our method yields larger γi due to small N , removing this limit can prevent restricting randomness. The effectiveness of this
modification is demonstrated in Sec. 4.3.

B. Detailed Related Work
In Sec. 2, we provided a brief overview of related work. Here, we offer a more comprehensive introduction.

B.1. Cloud Removal
Traditional Methods. Traditional CR methods, with the use of mathematical transform [15, 56], physical principles [52, 55],
information cloning [29, 43], offer great interpretability. However, they tend to underperform in comparison to deep learning
techniques, which limits their practical applications.
GAN-based Methods. Current deep learning-based CR methods primarily use GANs, with cGANs [37] and Pix2Pix [19] as
the vanilla paradigm. In CR tasks [1, 9, 12], both cloudy images and noise are fed into the generator to produce a cloudless
image. The ground truth or predicted cloudless images, along with the cloudy image, are fed into the discriminator, which
determines whether the input includes the ground truth image. Through adversarial training, the generator learns to produce
nearly real cloudless images. To improve cGANs for CR tasks, SpA GAN [40] introduces a Spatial Attentive Network
(SPANet) that incorporates a spatial attention mechanism in its generator to improve CR performance. The Simulation-
Fusion GAN [10] further improves CR performance by integrating SAR images. It operates in two stages: first, it employs a
specific convolutional neural network (CNN) to convert SAR images into optical images; then, it fuses the simulated optical
images, SAR images, and original cloudy optical images using a GAN-based framework to reconstruct the corrupted regions.
TransGAN-CFR [26] proposes an innovative transformer-based generator with a hierarchical encoder-decoder network. This
design includes transformer blocks [50] using a non-overlapping window multi-head self-attention (WMSA) mechanism and



Table 5. Details of our best training and testing configurations.

CUHK-CR1 CUHK-CR2 SEN12MS-CR Sen2 MTC New

Parameters 39.13M 39.13M 39.13M 148.88M

Training Steps 22,500 26,300 446,700 64,141
Training Epochs 500 470 46 500
Batch Size 4 2 2 8
Precision tf32 tf32 tf32 tf32
Training Hardware 3 RTX 3090 4 RTX 4090 4 RTX 4090 4 RTX 4090

In Channels 8 (= 4 + 0 + 4) 8 (= 4 + 0 + 4) 28 (= 13 + 2 + 13) 7 (= 3 + 1 + 3)
Out Channels 4 4 13 3

Patch Size 1 1 1 4
Levels (Local + Global Attention) 2 + 2 2 + 2 2 + 2 2 + 1
Depth [2, 2, 2, 2] [2, 2, 2, 2] [2, 2, 2, 2] [2, 2, 16]
Widths [128, 256, 384, 768] [128, 256, 384, 768] [128, 256, 384, 768] [256, 512, 768]
FFN Intermediate Widths [256, 512, 768, 1536] [256, 512, 768, 1536] [256, 512, 768, 1536] [512, 1024, 1536]
Attention Heads (Width / Head Dim) [2, 4, 6, 12] [2, 4, 6, 12] [2, 4, 6, 12] [4, 8, 12]
Attention Head Dim 64 64 64 64
Neighborhood Kernel Size 7 7 7 7
Dropout Rate [0.0, 0.0, 0.0, 0.1] [0.0, 0.0, 0.0, 0.1] [0.0, 0.0, 0.0, 0.1] [0.0, 0.0, 0.0, 0.0]

Mapping Depth 2 2 2 2
Mapping Width 768 768 768 768
Mapping FFN Intermediate Width 1536 1536 1536 1536
Mapping Dropout Rate 0.1 0.1 0.1 0.1

α 3.0 3.0 3.0 3.0
σdata 1.0 1.0 1.0 1.0
σmu 1.0 1.0 1.0 1.0
σcov 0.9 0.9 0.9 0.9
Pmean in Algorithm 1 -1.4 -1.2 -1.2 -1.4
Pstd in Algorithm 1 1.4 1.2 1.2 1.4

Optimizer AdamW AdamW AdamW AdamW
Learning Rate 1e-4 1e-4 1e-4 1e-4
Betas [0.9, 0.999] [0.9, 0.999] [0.9, 0.999] [0.9, 0.999]
Eps 1e-8 1e-8 1e-8 1e-8
Weight Decay 1e-2 1e-2 1e-2 1e-2

EMA Decay 0.9999 0.9999 0.9999 0.9999

Sampling Steps N 4 4 5 5
σmin 0.001 0.001 0.001 0.001
σmax 100 100 100 100
Schurn 0.1 2.5 5.0 1.0
Snoise 0.995 1.0 1.023 1.0
Stmin 0.0 0.0 0.0 0.0
Stmax 100000000 100000000 100000000 100.0

a modified feed-forward network (FFN). SAR images are also integrated with cloudy images in this network, and a new
triplet loss is introduced to improve CR capabilities.
DM-based Methods. Diffusion Models (DMs), a new type of generative model, have outperformed GANs in image gen-
eration tasks [4] and shown potential in image restoration tasks [27], including CR. Current diffusion-based CR methods
mostly adhere to the basic DM framework. Concretely, DDPM-CR [20] leverages the DDPM [14] architecture to integrate
both cloudy optical images and SAR images to extract DDPM features. The features are then used for cloud removal in
the cloud removal head. DiffCR [64] introduces an efficient time and condition fusion block (TCFBlock) for building the
denoising network and a decoupled encoder for extracting features from conditional images (e.g. SAR images) to guide the



DM generation process. SeqDM [62] is designed for multi-temporal CR tasks. It comprises a new sequential-based training
and inference strategy (SeqTIS) that processes sequential images in parallel. It also extends vanilla DMs to multi-modal
diffusion models (MmDMs) for incorporating the additional information from auxiliary modalities (e.g. SAR images).
Non-Generative Methods. Some non-generative methods have also been proposed for CR, serving as alternatives to GAN-
based and DM-based methods. DSen2-CR [36] employs a super-resolution ResNet [25, 28] and can function as a multi-modal
model as it can process optical images and SAR images together by concatenating them as inputs. GLF-CR [54], another
multi-modal model, introduces a global-local fusion network to use the additional SAR information. Specifically, it is a
dual-stream network where SAR image information is hierarchically integrated into feature maps to address cloud-corrupted
areas, using global fusion for relationships among local windows and local fusion to transfer SAR features. UnCRtainTS [8]
is designed for both multi-temporal and mono-temporal CR tasks. It includes an encoder for all time points, an attention-based
temporal aggregator for fusing sequential observations, and a mono-temporal decoder. The model incorporates multivariate
uncertainty quantification to enhance CR capabilities. The version with uncertainty quantification is called UnCRtainTS σ,
as shown in Tab. 1, while the one with simple L2 loss is named UnCRtainTS L2, as shown in Fig. 4.

B.2. Diffusion Models
Generative DMs DMs are initially applied to image generation. The vanilla DM, known as DDPM, is proposed by [14].
Concurrently, Song et al. propose NCSN [47], a generative model similar to DDPM, by estimating gradients of the data dis-
tribution. Song et al. further clarify the underlying principles of DMs using score matching methods [48], unifying DDPM as
the VP condition and NCSN as the VE condition. EDM [21] criticizes that the theory and practice of conventional generative
DMs [48] are unnecessarily complex and simplify DMs by presenting a clear design space to separate the design choices
of various modules, integrating both VP and VE DMs. They also redesign most key modules within their EDM to further
enhance the generation abilities. Additional improvements include faster sampling [32, 33], new denoising networks [2, 41],
and adjusted training loss weights [13]. Our denoising network is based on HDiT [2], which employs a scalable hourglass
transformer as the denoising network, effectively generating high-quality images in the pixel space.
Restoration DMs Building on the success of DMs in image generation, researchers have investigated their application in
image restoration [27]. The restoration DM can be categorized into supervised and zero-shot learning methods, as discussed
in Sec. 2. The first type is more relevant to our work, as our method adopts the supervised learning paradigm. Early
supervised methods condition DMs on low-quality reference images by simply concatenating them with noise as the input to
the denoising network, as demonstrated in SR3 [45] and Palette [44]. Later improvements focus on conditioning the models
on pre-processed reference images and features, as seen in CDPMSR [39] and IDM [11]. A significant advancement comes
from methods that modify the diffusion process itself to incorporate conditions. Specifically, IR-SDE [34] introduces a mean-
reverting SDE to define the forward process and derives the corresponding backward SDE, enabling generation from noisy
corrupted images rather than pure noise and leading to improved restoration results. Refusion [35] enhances this approach
by optimizing network architecture, incorporating VAE [22] for image compression, etc. ResShift [59] and RDDM [31] both
adopt the DDPM framework (i.e. the VP condition). Similar to IR-SDE, they modify the forward process to incorporate
both noise and residuals, facilitating diffusion from target images to noisy corrupted images. Notably, within the backward
process, ResShift uses a single denoising network, while RDDM employs separate networks to predict noise and residuals.
Similar strategies have also been employed by InDI [3], I2SB [30], etc.

C. Experiments
C.1. Implementation Details
C.1.1. Datasets
The CUHK-CR1 and CUHK-CR2 datasets, introduced by [49], consist of images captured by the Jilin-1 satellite with a size
of 512×512. CUHK-CR1 contains 668 images of thin clouds, while CUHK-CR2 includes 559 images of thick clouds. These
two datasets collectively form the CUHK-CR dataset. With an ultra-high spatial resolution of 0.5 m, the images encompass
four bands: RGB and near-infrared (NIR). Following [49], the CUHK-CR1 dataset is split into 534 training and 134 testing
images, while CUHK-CR2 is divided into 448 training and 111 testing images. The images are in PNG format, with integer
values in the range [0, 255].

The SEN12MS-CR dataset, introduced by [6], contains coregistered multi-spectral optical images with 13 bands from
Sentinel-2 satellite and SAR images with 2 bands from Sentinel-1 satellite. Collected from 169 non-overlapping regions of
interest (ROIs) across continents, each averaging approximately 52 × 40 km2 in size, the scenes of ROIs are divided into
256 × 256 pixel patches, with 50% spatial overlap. We use 114,050 images for training, 7,176 images for validation, and
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Figure 7. Additional visual results on the CUHK-CR1 dataset.
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Figure 8. Additional visual results on the CUHK-CR2 dataset.

7,899 images for testing. The dataset split follows previous works [6, 8].
The Sen2 MTC New dataset, introduced by [16], consists of coregistered RGB and IR images across approximately 50

non-overlapping tiles. Each tile includes around 70 pairs of cropped 256× 256 pixel patches with pixel values ranging from
0 to 10, 000. Following [16], the dataset is divided into 2, 380 images for training, 350 for validation, and 687 for testing.

C.1.2. Pre-Processing
As with common deep learning methods, images must be pre-processed before being input into our neural network. Given
that datasets vary in their characteristics, we apply distinct pre-processing techniques to each one, following established
practices. Below, we provide a detailed explanation.
The CUHK-CR1 and CUHK-CR2 datasets. Following [49], we resize images from 512× 512 pixels to 256× 256 pixels.
Subsequently, the pixel values are rescaled to a range of [−1, 1].
The Sen2 MTC New dataset. Following [16], the pixel values of images are initially scaled to the [0, 1] range by dividing
by 10, 000, then normalized using a mean of 0.5 and a standard deviation of 0.5. For the training split, data augmentation
includes random flips and a 90-degree rotation every four images.
The SEN12MS-CR dataset. Following [7], the pixel values of SAR and optical images are clipped to the ranges of [−25, 0]
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Figure 9. Additional visual results on the SEN12MS-CR dataset. As GLF-CR [54] can only process 128 × 128 images, unlike others
(256 × 256), we divide each image into four parts, process them individually, and merge the results. Optical image brightness is linearly
enhanced for visualization.

Target McGAN Pix2Pix STGAN CTGAN PMAA UnCRtainTS σ DiffCR Ours l=1  l=2  l=3
Cloudy and IR

Figure 10. Additional visual results on the Sen2 MTC New dataset.

and [0, 10000], respectively. However, we rescale the pixel values of all images to the range of [−1, 1] to achieve centrosym-
metric pixel values, which is different from [7].

C.1.3. Configuration

The optimal configuration is detailed in Tab. 5. The number of input channels is the sum of channels from noisy corrupted
images, auxiliary modal images, and original corrupted images, as shown in Fig. 3. The table lists these channels as (input
noisy corrupted image channels + input auxiliary modal image channels + input original corrupted image channels). For
example, in the Input Channels row in Tab. 5, 28(= 13 + 2 + 13) means that the noisy corrupted image has 13 channels,
the auxiliary modal image has 2 channels and the original corrupted image has 13 channels. Notably, in CUHK-CR1 and
CUHK-CR2 datasets, we reconstruct RGB and NIR channels following established methods, incorporating the NIR channel
into the noisy corrupted image input rather than treated as auxiliary data. Consequently, the auxiliary modal image channel
count for these datasets is zero.

C.1.4. Evaluation Metrics in Theory

To comprehensively evaluate the performance, we employ multiple metrics including peak signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM) [53], mean absolute error (MAE), spectral angle mapper (SAM) [24], and learned
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Figure 11. Visual results generated by the stochastic sampler and the deterministic sampler. For the deterministic sampler, we set N = 5,
σmin = 0.001 and σmax = 100. For the stochastic sampler, we set N = 5, σmin = 0.001, σmax = 100, Schurn = 1.0, Snoise = 1.0, Stmin = 0
and Stmax = 100.
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Figure 12. Visual results under different configurations of (α, σmax, N ). For example, (3.0, 100.0, 5) represents the restored results with
α = 3.0, σmax = 100.0 and N = 5.

perceptual image patch similarity (LPIPS) [60]. The precise computational formulations of these metrics are as follows:

PSNR(y, ŷ) = 20 log10

(
1

RMSE(y, ŷ)

)
, (89)

SSIM(y, ŷ) =
(2µyµŷ + c1) (2σyŷ + c2)(

µ2
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ŷ + c1

)(
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RMSE(y, ŷ) =
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Here, we denote the predicted image as ŷ and the ground truth image as y. with channel number C, height H and width W .
The notation yc,h,w and ŷc,h,w refers to a specific pixel in y and ŷ, indicated by subscript c, h, w. In Eq. (90), µy and µŷ

represent the means, and σy and σŷ are the standard deviations of y and ŷ, respectively. The covariance is symbolized by
σyŷ . The constants c1 and c2 stabilize the calculations. To compute LPIPS [60], a pre-trained network F processes y and ŷ
to derive intermediate embeddings across multiple layers. The activations are normalized, scaled by a vector w, and the L2
distance between embeddings of y and ŷ is calculated and averaged over spatial dimensions and layers as the final LPIPS
value, as shown in Eq. (93). In Eq. (93), i indicates the layer of F , with Hi, Wi, and wi being the height, width, and scaling
factor at the layer i. The embeddings at the position (h,w) and the layer i are denoted as ŷi

h,w and yi
h,w. We use the official

implementations of [60] to calculate the value of LPIPS.

C.1.5. Evaluation Metrics in Practice
Although the theoretical methods for these evaluation metrics are consistent across datasets, practical calculations may vary
due to pre-processing, post-processing, etc. To ensure a fair comparison, we apply different computing methods for each
dataset, in line with prior research. Detailed explanations for each dataset are provided here.
The CUHK-CR1 and CUHK-CR2 datasets. Following [49], we scale the pixel values of the restored and ground truth
images, i.e. ŷ and y, to the range [0, 255], and clamp any out-of-range values. These pixel values are then converted to
unsigned integers. PSNR is calculated using all channels, while SSIM and LPIPS are first calculated for each channel and
then averaged. To calculate LPIPS, we employ a pre-trained AlexNet [23] as F .
The Sen2 MTC New dataset. We adopt the DiffCR [64] approach by rescaling the pixel values of the restored and ground
truth images to the range [0, 1000], clipping values outside [0, 2000], and then rescaling back to [0, 1]. These processed
images are used to compute PSNR and SSIM across all channels. For LPIPS, the input images are further rescaled to [−1, 1]
and processed using a pre-trained AlexNet [23] as F .
The SEN12MS-CR dataset. All the images are rescaled to [0, 1]. Then, the rescaled images are used to compute PSNR,
SSIM, MAE, and SAM, with all channels used.

C.1.6. Reproducing Details
For closed-source methods, we use the metric values they report. In contrast, for certain open-source methods, we implement
the algorithms ourselves and present visual results in Fig. 4. When implementing previous methods, if pre-trained weights are
available, we directly use them; otherwise, we retrain the models from scratch. Below, we briefly outline the implementation
details of the reproduced methods.
The CUHK-CR1 and CUHK-CR2 datasets. The CUHK-CR1 and CUHK-CR2 datasets are relatively new, with limited
prior research [49]. The authors evaluate five existing methods: SpA-GAN [40], AMGAN-CR [57], CVAE [5], Memo-
ryNet [61], and MSDA-CR [58], alongside their proposed methods, DE-MemoryNet and DE-MSDA [49], on these two
dataset. In [49], metrics for all methods are reported, with pre-trained weights provided only for MemoryNet and MSDA-
CR. Consequently, we use these weights and retrain DE-MemoryNet and DE-MSDA to present visual results in Fig. 4.
DE-MSDA is excluded from Fig. 4 as it performs worse than DE-MemoryNet, despite being introduced in the same study.
The SEN12MS-CR dataset. As McGAN [9] and SpA GAN [40] do not have pre-trained weights for this dataset, we
retrain them and present the visual results in Fig. 4. In contrast, pre-trained weights for DSen2-CR [36], GLF-CR [54],
and UnCRtainTS [8] are available and have also been used for visualization in Fig. 4. Notably, GLF-CR [54] operates on
128 × 128 images, while other methods use 256 × 256 images. To ensure consistency, we divide each image into four
segments, process them independently, and subsequently merge them for visualization, as shown in Fig. 4. The performance
metrics for all previous methods on this dataset are cited from [8] and [64].
The Sen2 MTC New dataset. Metrics values are cited from [16], [63], and [64]. We retrain McGAN [9], Pix2Pix [19],
STGAN [46] and UnCRtainTS [8], while using pre-trained weights of CTGAN [16], PMAA [63], and DiffCR [64] for
visualization in Fig. 4.

C.2. Efficiency Analysis
We first present a comparative analysis of parameter counts (Params) and multiply-accumulate operations (MACs) of our
proposed method against recent state-of-the-art approaches. in Tab. 6 across the four datasets. Our analysis excludes early
methods due to their significantly inferior performance compared to EMRDM and the unavailability or irreproducibility of



Table 6. The Comparison of Params (the number of parameters) and MACs (multiply-accumulate operations).

(a) SEN12MS-CR GLF-CR UnCRtainTS L2 DiffCR EMRDM
Params (M) 14.827 0.519 22.96 39.13
MACs (G) 245.28 28.02 29.37 83.57

(b) CUHK-CR MemoryNet MSDA-CR DE EMRDM
Params (M) 3.64 3.91 36.80 39.13
MACs (G) 548.65 53.45 199.15 83.33

(c) Sen2 MTC New STGAN CTGAN CR-TS Net PMAA UnCRtainTS DDPM-CR DiffCR EMRDM
Params (M) 231.93 642.92 38.68 3.45 0.56 445.44 22.91 148.88
MACs (G) 1094.94 632.05 7602.97 92.35 37.16 852.37 45.86 74.39

their detailed implementations. All MACs are computed with a batch size of 1 and an input image resolution of 256× 256 to
ensure fair comparisons. It should be noted that although GLF-CR [54] typically operates on 128 × 128 resolution images,
we evaluated it at 256 × 256 resolution for efficiency analysis to maintain consistency across comparisons. Moreover, for
DiffCR, which lacks official implementation details for the SEN12MS-CR dataset, we reproduce it on this dataset based
on the description outlined in [64] and report the corresponding Params and MACs in Tab. 6. The entries labeled ”DE”
in Tab. 6 denote DE-MemoryNet and DE-MSDA [49], which share identical Params and MACs. The results of efficiency
analysis demonstrate that EMRDM achieves performance gains with reasonable increments in Params and MACs, particularly
for mono-temporal tasks. While multi-temporal tasks necessitate additional parameters of EMRDM to effectively model
complex temporal dependencies in image sequences, the corresponding MACs remain within reasonable bounds for real-
world applications.

We further analyzed the training and sampling time of EMRDM across the four datasets. For standardization, we use
the configurations in Tab. 5 and measured training time per batch with batch size unchanged and sampling time per image
with batch size changed to 1. All experiments are conducted on a single NVIDIA RTX 4090 GPU to ensure fair compar-
isons. Per-batch training times measure 1,410.5 ms (CUHK-CR1), 1,237.7 ms (CUHK-CR2), 1,230.5 ms (SEN12MS-CR),
and 204.7 ms (Sen2 MTC New), with per-image sampling times of 131.2 ms (CUHK-CR1), 128.0 ms (CUHK-CR2), 136.4
ms (SEN12MS-CR), and 173.1 ms (Sen2 MTC New). These timing measurements are hardware-dependent and may fluc-
tuate. Hence, we report only mean values. Notable, sampling time is particularly significant since training occurs only
once, while sampling is performed repeatedly in practical CR applications. The measured sampling times demonstrate that
EMRDM meets real-time requirements for CR applications, a critical factor for remote sensing, while delivering significant
performance advantages.

C.3. Additional Results
This section presents additional results, including visual examples from the CUHK-CR1, CUHK-CR2, SEN12MS-CR, and
Sen2 MTC New datasets in Fig. 7, Fig. 8, Fig. 9, and Fig. 10, respectively. Visual comparisons using our stochastic and deter-
ministic samplers are shown in Fig. 11. Additionally, results under varying settings of (α, σmax, N) are provided in Fig. 12.



References
[1] Jose D Bermudez, Patrick Nigri Happ, Dario Augusto Borges Oliveira, and Raul Queiroz Feitosa. Sar to optical image synthesis for

cloud removal with generative adversarial networks. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 4:5–11, 2018. 8

[2] Katherine Crowson, Stefan Andreas Baumann, Alex Birch, Tanishq Mathew Abraham, Daniel Z Kaplan, and Enrico Shippole.
Scalable high-resolution pixel-space image synthesis with hourglass diffusion transformers. In Forty-first International Conference
on Machine Learning, 2024. 10

[3] Mauricio Delbracio and Peyman Milanfar. Inversion by direct iteration: An alternative to denoising diffusion for image restoration.
Transactions on Machine Learning Research, 2023. Featured Certification. 10

[4] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in neural information processing
systems, 34:8780–8794, 2021. 9

[5] Haidong Ding, Yue Zi, and Fengying Xie. Uncertainty-based thin cloud removal network via conditional variational autoencoders.
In Proceedings of the Asian Conference on Computer Vision, pages 469–485, 2022. 14

[6] Patrick Ebel, Andrea Meraner, Michael Schmitt, and Xiao Xiang Zhu. Multisensor data fusion for cloud removal in global and
all-season sentinel-2 imagery. IEEE Transactions on Geoscience and Remote Sensing, 59(7):5866–5878, 2020. 10, 11

[7] Patrick Ebel, Yajin Xu, Michael Schmitt, and Xiao Xiang Zhu. Sen12ms-cr-ts: A remote-sensing data set for multimodal multitem-
poral cloud removal. IEEE Transactions on Geoscience and Remote Sensing, 60:1–14, 2022. 11, 12

[8] Patrick Ebel, Vivien Sainte Fare Garnot, Michael Schmitt, Jan Dirk Wegner, and Xiao Xiang Zhu. Uncrtaints: Uncertainty quantifi-
cation for cloud removal in optical satellite time series. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2086–2096, 2023. 10, 11, 14

[9] Kenji Enomoto, Ken Sakurada, Weimin Wang, Hiroshi Fukui, Masashi Matsuoka, Ryosuke Nakamura, and Nobuo Kawaguchi. Filmy
cloud removal on satellite imagery with multispectral conditional generative adversarial nets. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pages 48–56, 2017. 8, 14

[10] Jianhao Gao, Qiangqiang Yuan, Jie Li, Hai Zhang, and Xin Su. Cloud removal with fusion of high resolution optical and sar images
using generative adversarial networks. Remote Sensing, 12(1):191, 2020. 8

[11] Sicheng Gao, Xuhui Liu, Bohan Zeng, Sheng Xu, Yanjing Li, Xiaoyan Luo, Jianzhuang Liu, Xiantong Zhen, and Baochang Zhang.
Implicit diffusion models for continuous super-resolution. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10021–10030, 2023. 10

[12] Claas Grohnfeldt, Michael Schmitt, and Xiaoxiang Zhu. A conditional generative adversarial network to fuse sar and multispectral
optical data for cloud removal from sentinel-2 images. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing
Symposium, pages 1726–1729. IEEE, 2018. 8

[13] Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and Baining Guo. Efficient diffusion training
via min-snr weighting strategy. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 7441–7451,
2023. 10

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information processing
systems, 33:6840–6851, 2020. 3, 9, 10

[15] Gensheng Hu, Xiaoyi Li, and Dong Liang. Thin cloud removal from remote sensing images using multidirectional dual tree complex
wavelet transform and transfer least square support vector regression. Journal of Applied Remote Sensing, 9(1):095053–095053,
2015. 8

[16] Gi-Luen Huang and Pei-Yuan Wu. Ctgan: Cloud transformer generative adversarial network. In 2022 IEEE International Conference
on Image Processing (ICIP), pages 511–515. IEEE, 2022. 11, 14

[17] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching. Journal of Machine Learning
Research, 6(4), 2005. 2

[18] Aapo Hyvärinen, Jarmo Hurri, Patrik O Hoyer, Aapo Hyvärinen, Jarmo Hurri, and Patrik O Hoyer. Estimation of non-normalized
statistical models. Natural Image Statistics: A Probabilistic Approach to Early Computational Vision, pages 419–426, 2009. 3

[19] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with conditional adversarial networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 8, 14

[20] Ran Jing, Fuzhou Duan, Fengxian Lu, Miao Zhang, and Wenji Zhao. Denoising diffusion probabilistic feature-based network for
cloud removal in sentinel-2 imagery. Remote Sensing, 15(9):2217, 2023. 9

[21] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models. Ad-
vances in neural information processing systems, 35:26565–26577, 2022. 2, 3, 4, 5, 6, 7, 8, 10

[22] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International Conference on Learning Representa-
tions, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. 10

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. Advances
in neural information processing systems, 25, 2012. 14



[24] Fred A Kruse, AB Lefkoff, y JW Boardman, KB Heidebrecht, AT Shapiro, PJ Barloon, and AFH Goetz. The spectral image
processing system (sips)—interactive visualization and analysis of imaging spectrometer data. Remote sensing of environment, 44
(2-3):145–163, 1993. 12
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