
A. Computational Complexity of Multi-head
Cost Volume

Suppose the dimension of an input activation is CHW,
and the max disparity is d. The number of multiply-
accumulate operations (#MAC) of the original cost vol-
ume is 3CHWd (please refer to Algorithm 1). The layer
norm along channel dimension is defined as Eq. (10), whose
#MAC is 3HWd. Replacing the cosine similarity with the
dot product, and adding the layer norm before the loop re-
duce the #MAC. The #MAC of multi-head cost volume is
2 × 3CHW + CHWd < 3CHWd. (The definition of param-
eters in Eq. (10) follow [4].)
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B. SIFT v.s. Conv Network
As [30] analyses, the computational complexity of SIFT for
an N × N image with n × n tiles is
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where x is the neighborhood of tiles. N ≫ n > x in most
cases, we can simplify the complexity as O(N2).

For convolutional networks, the computational complex-
ity for an N × N input activation with C channels in input
and C′ channels in output is,

O(N2CC′k2) (12)

where k is the convolution kernel size. N ≫ C > k in most
cases, we can also simplify the complexity as O(N2).

Based on the above analysis, we can conclude that: Su-
pervised learning convolutional neural networks capa-
ble of the same task will not perform worse efficiency
for all computer vision algorithms requiring key point
matching. As the same, CNN is as efficient as, or even
outperforms, classic algorithms in homography estimation
tasks.

In practice, many optimizations for CNNs have been pro-
posed, and CNN computations are more hardware-friendly.
In contrast, [30] has been proven that without improvements
in the input bandwidth, the power of multicore processing
cannot be used efficiently for SIFT. Therefore, CNNs are
generally a more efficient approach. Based on the report in
[31] and our experiments, keypoint matching takes around
300ms on both smartphones and laptops. There is no sig-
nificant speed up from smartphone to laptop, showing the
limitations of keypoint matching.

C. Dataset Setting
DTU setting: Based on previous implementations and
common practices [33], we selected the evaluation set as

L 1 2 3 4 5 7 8 9 10 11 12 12
R 2 3 4 5 6 6 7 8 9 10 11 13
L 13 14 15 16 17 18 19 21 22 23 24 25
R 14 15 16 17 18 19 20 20 21 22 23 24
L 26 27 28 29 29 30 31 32 33 34 35 36
R 25 26 27 28 30 31 32 33 34 35 36 37
L 38 40 41 42 43 44 45 45 46 47 48 49
R 39 39 40 41 42 43 44 44 45 46 47 48

Table 6. Input images pairs of DTU Dataset

scans {1, 4, 9, 10, 11, 12, 13, 15, 23, 24, 29, 32, 33, 34, 48,
49, 62, 75, 77, 110, 114, 118}, validation set: scans {3, 5,
17, 21, 28, 35, 37, 38, 40, 43, 56, 59, 66, 67, 82, 86, 106,
117}, and the rest is training set.

Additionally, our network takes two images as input, but
the depth map is aligned with the left image. This means
that the left and right inputs cannot be interchanged. We
need to match the stereo images to ensure that the relative
position of the left input is indeed on the left side of the right
input. The image match list is shown as Tab. 6.

ADT setting: As mentioned, ATD ignores users’ bod-
ies in the images when rendering ground truth depth
maps which causes inconsistencies between the input im-
ages and the predicted results. We selected subsets of
the scene where no other users were present. The se-
lected subset can be obtained by this query link: https:
//explorer.projectaria.com/adt?q=%22is_
multi_person+%3D%3D+false%22

D. Metrics Definition
Here are the definitions of the metrics we used for evalua-
tion:
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(ŷi – yi)2 (15)

where N is the total number of pixels of the depth maps, yi
is the value of pixels in ground truth map, and ŷi is the value
of pixels in prediction.

E. Robustness Analysis
HOMODEPTH is a muti-task learning structure, and the
depth estimation depends on the predicted homography ma-
trix. Thus, the accuracy of homography estimation affects
depth estimation. In this section, we address two questions:
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(a) The statistics of the error in homography estimation.
The curve represents the Gaussian fitting of the statistical
results.

(b) The simulation of the influence of noise added to the
homography matrix. The blue bars represent the smooth
loss error ranges corresponding to noise variances σ, and
the cross points represent outliers.

Figure 9. The robustness analyze of HOMODEPTH

(1) How sensitive is the depth estimation to the homography
estimation? (2) How stable is the homography estimation?

Homography Estimation Errors. We analyze the error
of HOMODEPTH during homography estimation. In prac-
tice, the error variance is as small as 0.003, as shown in
Fig. 9a. This indicates that the homography estimation of
HOMODEPTH is highly accurate.

Sensitivity Study. In HOMODEPTH, we inject noise n ∼
N(0,σ), where σ ∈ [0, 2], to the elements of estimated ho-
mography matrix before it is passed to the multi-head cost
volume blocks. Then, we investigate the final depth esti-
mation errors. The instability is quantified by examining
the noise variance and corresponding changes in the smooth
loss function Eq. (6) corresponding to depth estimation. As
shown in Fig. 9b, the standard deviation trends indicate that
depth estimation remains stable when σ < 0.5. The linear
fitting demonstrates that the loss values increase as the noise
variance grows.

F. Application Scenarios
For one-shot scenarios, we recommend using HOMOD-
EPTH. For continuous frames scenarios, we assume that
the relative positions of the cameras on AR glasses remain

stable over a short period. Therefore, we recommend first
running HOMODEPTH to obtain depth estimation while si-
multaneously deriving the homography between the two
cameras. For subsequent stereo inputs, rectification can
be quickly applied with homography, and MULTIHEAD-
DEPTH can be utilized to achieve higher efficiency.
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