
Enhancing Online Continual Learning with Plug-and-Play State Space Model

and Class-Conditional Mixture of Discretization

Supplementary Material

A. Implementation details

A.1. Training details

In Table 5, we provide the hyper-parameter settings for our

method when ER is used as the baseline. As shown in the

table, for the same dataset, we tend to set the total number

of patterns N to a fixed value and set α and β to a ratio of

1 : 5. When we need to reduce the impact of our module,

we can proportionally decrease the weights. Actually, dif-

ferent hyper-parameter settings help to unleash the potential

of various classifiers (linear classifier, ETF classifier, NCM

classifier). hyper-parameters not mentioned in the table re-

main consistent with the original baseline.

A.2. Dataset

As stated in Sec. 5 (Experiments), we primarily conduct

experimental validation on three datasets: CIFAR10, CI-

FAR100, and TinyImageNet. It is important to note that

the sample sizes and the number of classes vary across

these datasets, which may lead to the use of different hyper-

parameters in our method. Our experimental implementa-

tion follows the guidelines of CCLDC [44]. Specifically:

CIFAR-10 is a dataset composed of 10 classes, which we

divide into 5 tasks, with each task containing 2 classes. It

includes a total of 50,000 training samples and 10,000 test

samples, with image dimensions of 32×32.

CIFAR-100 consists of 100 classes, divided into 10 tasks,

with each task containing 10 classes. It also contains 50,000

training samples and 10,000 test samples, with image di-

mensions of 32×32.

TinyImageNet comprises 200 classes, divided into 100

tasks, with each task containing 2 classes. It includes

100,000 training samples and 10,000 test samples, with im-

age dimensions of 64×64.

A.3. Pseudo­code

To facilitate understanding and usage of our proposed plug-

and-play module, S6MOD, we provide pseudo-code in Al-

gorithm 1 to demonstrate how to integrate S6MOD with the

current baseline. For simplicity, we omit the workflows of

LDR and Lz, as well as the samples in the memory buffer.

Algorithm 1 PyTorch-like pseudo-code of S6MOD to inte-

grate to other baselines.

model: the whole model

model.logits: logit function of model (base

classification)↪→

model.S6MOD: obtain features using S6MOD

model.ETF: ETF logit function of model (ETF

classification)↪→

cos_sim: cosine similarity calculation function

optim: optimizer for model

for x, y in dataloader:

Baseline loss

pred_base = model.logits(x)

loss_base = criterion_baseline(model, x, y)

S6MOD loss

fea, deltas = model.S6MOD(x)

pred_etf = model.ETF(fea)

loss_Diff = kl_div(pred_base, pred_etf)

loss_Cont = 0

for i in range(len(y)):

for j in range(i+1, len(y)):

if y[i]==y[j]:

loss_Cont -= cos_sim(deltas[i], deltas[j])

else:

loss_Cont += cos_sim(deltas[i], deltas[j])

hyperparameters alpha and beta

loss_S6MOD = loss_DR + alpha*loss_Diff +

beta*loss_Cont + loss_z↪→

loss = loss_base + loss_S6MOD

optim.zero_grad()

loss.backward()

optim.step()

A.4. Metrics

We use three commonly employed evaluation metrics Av-

erage Accuracy (Acc), Average Forgetting (AF) and New-

Task Average Accuracy (N-Acc) in the main text [44], and

we will introduce their definitions in detail here.

In continual learning, after each task t is completed, the

model needs to be tested on all previously learned tasks

{1, 2, . . . , t}. The Acc is defined as:

AccT =
1

T

T∑

t=1

At,T , (14)

where T is the total number of tasks, and At,T is the test

accuracy on task t after learning task T :

At,T =

∑Nt

i=1
1(ŷi,t = yi,t)

Nt

. (15)

Here, Nt is the number of samples in task t, ŷi,t is the pre-

dicted class of the i-th sample, and yi,t is the true class of

Dataset CIFAR10 CIFAR100 Tiny-ImageNet

Memory Size M 500 1000 1000 2000 5000 2000 5000 10000

N 10 10 8 8 8 10 10 10

α 1 1 1 1 1 1 1 0.5

β 5 5 5 5 5 5 5 2.5

Table 5. The hyper-parameter settings for our S6MOD on ER.

the i-th sample.

The Average Forgetting (AF) is the average of the forget-

ting rates over all tasks. It provides an overall measure of

how much the model forgets across all previously learned

tasks as new tasks are added. A low AF indicates that the

model effectively retains knowledge from previous tasks,

while a high AF suggests that the model suffers from sig-

nificant forgetting when learning new tasks. AF is defined

as:

AF =
1

T − 1

T∑

t=2

FRt, (16)

where T is the total number of tasks. FRt is the Forgetting

Rate for task t, defined as:

FRt = max
i∈{1,...,t−1}

(Ai,i −Ai,t) , (17)

where Ai,i is the accuracy on task i after learning task i, and

Ai,t is the accuracy on task i after learning task t. The AF

is averaged over all tasks after the first one, as the first task

does not cause any forgetting.

The New-Task Average Accuracy (N-Acc) is the aver-

age accuracy of the model on all tasks when they are first

learned. This metric provides an overall measure of how

well the model performs on each task at the time it is intro-

duced, without considering any changes in performance as

other tasks are learned later. N-Acc is defined as:

N-Acc =
1

T

T∑

t=1

At,t, (18)

where T is the total number of tasks and At,t is the accuracy

on task t immediately after task t is learned, i.e., when the

model first encounters the task. This metric directly reflects

the model’s ability to learn new tasks.

B. Extra Experiments

B.1. Performance with NCM classifier.

The Nearest Class Mean (NCM) classifier is a simple yet

effective classification method, often used as a component

in continual learning scenarios. To further demonstrate that

our method also learns more generalizable and discrimina-

tive features with NCM, we use an NCM classifier to test

Method NCM Acc. ↑ Logit Acc. ↑

ER 64.31±0.98 62.32±4.13

ER + Ours 67.24±2.32 65.80±2.16

OCM 72.47±1.04 73.15±1.05

OCM + Ours 76.36±0.66 75.31±1.10

OCM-CCLDC 74.80±1.72 77.66±1.46

OCM-CCLDC + Ours 79.37±0.89 78.21±1.03

Table 6. Final average accuracy on CIFAR-10 (M = 1k), with

and without our method on NCM and Logit predictions.

Method NCM Acc. ↑ Logit Acc. ↑

ER 36.40±0.81 31.89±1.45

ER + Ours 36.99±0.65 34.55±1.66

OCM 37.76±0.70 35.69±1.36

OCM + Ours 39.98±1.19 38.97±2.28

OCM-CCLDC 40.28±1.08 43.34±1.51

OCM-CCLDC + Ours 44.55±1.42 44.40±2.26

Table 7. Final average accuracy on CIFAR-100 (M = 2k), with

and without our method on NCM and Logit predictions..

our method. As shown in Table 6 and Table 7, our method

achieves superior performance when using the NCM classi-

fier. This indicates that our method is also compatible with

NCM classifier to learn more discriminative features.

B.2. More T­SNE visualization.

As described in Sec. 1 (Introduction) and demonstrated in

“Analysis of Feature Embedding,” incorporating S6MOD

helps the model learn more generalizable and discriminative

features. To further validate this, we present comprehensive

t-SNE visualizations in Fig. 5, explicitly showcasing the su-

periority of our method on more baseline methods. Given

that the MOSE and MOE-MOSE structures are identical,

with the only difference being during inference, we only re-

port the features of MOSE here.

(a) ER (b) ER + Ours (c) OCM (d) OCM + Ours

(e) OnPro (f) OnPro + Ours (g) OCM-CCLDC (h) OCM-CCLDC + Ours

(i) OnPro-CCLDC (j) OnPro-CCLDC + Ours (k) MOSE (l) MOSE + Ours

Figure 5. T-SNE visualization of features before classification of memory data at the end of training on CIFAR-100 (M = 2k).

