Enhancing Testing-Time Robustness
for Trusted Multi-View Classification in the Wild

Supplementary Material

A. Proof of Propositions

Proposition 1. A (kv) is an («, d)-risk-controlling discov-
ery (RCD) function.

Proof:
1. Problem Setup and Objective
We aim to prove that the discovery function A (k) satisfies
the properties of an («, 6)-risk-controlling discovery (RCD)
function. Specifically, we want to show:

P(FDR (A (x")) € a) = 14,
where the false discovery rate (FDR) is defined as:
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FDR (A (x")):=E

2. Definitions and Threshold Construction

Given the validation set D,q; containing L samples, their
uncertainty scores ui,...,uy are exchangeable. Sorting
these scores gives:

u’gl) S u’é}2) S o< UEJL)

According to the Equation (8), the threshold k" is defined
as the (1 — «)-quantile of the ordered validation scores:

K= U o)1+ L))"

This definition ensures that at most «- (L + 1) samples from
the validation set exceed K".
For any test sample j € Dycst, the p-value is defined as:

1 14u?y > u?
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This p-value represents the fraction of validation uncer-
tainty scores less than or equal to uf. If ui > k", the null
hypothesis uj < K" is rejected, classifying j as unreliable,
and then we have:
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3. Marginal Validity
The p-values are marginally valid because k" is constructed
from the (1 — a)-quantile of D..q;. Specifically:

P (u; > /@”) <a="P (p—value (ef;) < a) < a.

Thus, the probability of incorrectly classifying a test sample
as unreliable (a false discovery) is bounded by c.

4. False Discovery Rate (FDR)

False positives (FP) are defined as:

FP = Z]‘EDM 1{jesul>r"}

Since P (ug > HU) < q, the expected number of false posi-
tives (FP) is bounded by:

E [FP] < « - nulls,

where nulls is the number of null hypotheses in Dyest. The
total discoveries |S?| include both false positives (FP) and
true positives (TP). Thus |SV| = FP + TP.

The FDR is defined as:

FP
FDR(A (k') =E | —F——1.
A =E | ety o)
since S* > FP, and the numerator FP is bounded by
marginal validity, we have:

FDR < a.

5. High-Probability Control of FDR

To ensure that FDR is controlled with high probability 1—4,

consider the variability in k" :

* The threshold k" is determined from the validation set
Dya1, whose scores are exchangeable.

» Using concentration inequalities (e.g., Hoeffding’s in-
equality or Dvoretzky-Kiefer-Wolfowitz (DKW) inequal-
ity), the deviation of kK" from its expectation is bounded
with probability 1 — 6.

Specifically, using the Dvoretzky-Kiefer-Wolfowitz (DKW)

inequality, we can bound the deviation of the empirical

CDF from the true CDF. Let F(u) be the true cumulative

distribution function (CDF) of the uncertainty scores. For a

sample of size L, the DKW inequality states:

P (sup

where F, (u) is the empirical CDF.

Fp(u)—F (u)‘ > e) < 9e72L




Applying this to kY, the probability that the estimated
(1 — a)-quantile deviates from the true (1 — «)-quantile by
more than € is bounded by:

P(|s" = F ' (1-a)| >e¢) < 2e72L¢ < 5,
where § = 2e~2L€ . This guarantees that kv is concen-
trated around the true (1 — «)-quantile with high probabil-

ity, provided the validation set is sufficiently large.
Thus, the probability of FDR exceeding o is:

P(FDR (A (k")) > a) <.
Equivalently:
P(FDR (A (k")) <a)>1-4.

6. Special Case: o < 1/(L + 1)
when o < 1/(L+ 1) (a rare situation in the wild), the
threshold k" is undefined (or can be defined as infinity) be-
cause the validation set is too small to reliably estimate the
(1 — «)-quantile. This highlights the need for: 1) A suffi-
ciently large validation set such that (L +1) > 1/a; 2) A
practical lower bound on o based on the size of D.q;.

Note, when k" is defined as infinity, indicating that no
test samples will satisfy u; > k". This effectively means
no discoveries will be made, which trivially satisfies FDR
control but is not useful in practice.
To sum up, A (k") is an («, 0)-risk-controlling discovery
(RCD) function.

O

Proposition 2. Applying evidence filtering improves the
classification performance of TMVC fusion strategies (e.g.,
BCF, A-CBF, or ABF), under the assumption that unreliable
evidence provides incorrect information in the wild.

Proof: For k = 1,...,K, let t denote the index of the
ground-truth class, and {6§’k}kK:1 be the initial evidence
from some views. Consider an abnormal view (i.e., noisy or
corrupted) producing unreliable evidence {efk}szl, where
k = arg max {efk}i(:l .k # t. Assume this unreliable ev-
idence is strong enough to change the predicted label of
the initial evidence to k, leading to incorrect classification.
Let {eik}szl and {éik},i{:l be the evidence after fusion of
{efk}le with the initial evidence {efk}szl, with and with-
out filtering, respectively. Taking A-CBF as an example, the
prediction probabilities for class t under the two scenarios

are given as follows:
With filtering:
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Without filtering:
_ €; el + e,
Pit = ¢ i =% A .
Yo+l S0 (ef, +ef) +1
k=1 k=1

Similarly, the prediction probabilities for the incorrect
class k are:

o LoV
o Cik _ T
P =% == ,
eir +1 > (e ta-ef)+1
k=1 k=1
— o v
I €ik €k T ik
Pit = g T K )
Yoen+1 > (eg, +ep) +1
k=1 k=1

The difference between the probabilities for t and k is:

Ap = pit — pj, = = ;
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Filtering scales the unreliable evidence by «, so the nu-
merators satisfy:

(ef, +a-ejy) — (e +a-ef) > (e +ehy) — (e +ejf) -

Filtering also reduces the total contribution of unreliable
evidence in the denominator:

K K
(efk + - e;-’k) + 1< Z (e;,')k + e;)k) + 1.
k=1 k=1

Both the numerator and denominator changes lead to the
inequality: Ap > Ap. Similarly, for both ABF and BCF
fusion strategies, we also observe that Ap > Ap because
filtering reduces the impact of unreliable evidence, denoted
as o - ey, This results in the ground-truth class t being
more likely to have the highest prediction probability, i.e.,
Pit > D;j, Vk # L. As a consequence, the classification
error rate is reduced, leading to an overall improvement in
performance. (I

Proposition 3. The overall uncertainty of multi-view results
generated by TMVC fusion strategies with evidence filtering
for unreliable evidence will exhibit greater uncertainty than
fusion without evidence filtering.



Proof: Fork =1,...,K, let {e;?k}?:l be the initial ev-
idence from some views. Consider an abnormal view with
unreliable evidence {efk}le, let {eik}szl and {éik}szl
be the evidence after fusion of{efk}szl with the initial ev-
idence {efk}le, with and without filtering, respectively.

Taking A-CBF as an example, the overall uncertainty
score under the two scenarios is given by:

K _ K
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Since a € (0, 1), filtering reduces the contribution of unre-
liable evidence e;) in the denominator, resulting in u; > ;.
This demonstrates that evidence filtering increases the over-
all uncertainty score compared to fusion without filtering
for unreliable views.

Similarly, for the BCF and ABF fusion strategies,
filtering with o < 1 consistently reduces the impact of
unreliable evidence in the denominator, leading to the
inequality u; > u;. This indicates that evidence filtering
amplifies the model’s uncertainty for unreliable views, mak-
ing it more cautious in its predictions and less influenced
by noisy views. (I



