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A. Proof of Propositions
Proposition 1. Λ (κv) is an (α, δ)-risk-controlling discov-
ery (RCD) function.

Proof:
1. Problem Setup and Objective
We aim to prove that the discovery function Λ (κv) satisfies
the properties of an (α, δ)-risk-controlling discovery (RCD)
function. Specifically, we want to show:

P (FDR (Λ (κv)) ≤ α) ≥ 1− δ,

where the false discovery rate (FDR) is defined as:

FDR (Λ (κv)) :=E

[∑
j∈Dtest

1
{
j ∈ Sv, uv

j >κv
}

max {1, |Sv|}

]
.

2. Definitions and Threshold Construction
Given the validation set Dval containing L samples, their
uncertainty scores uv

1, . . . , u
v
L are exchangeable. Sorting

these scores gives:

uv
(1) ≤ uv

(2) ≤ . . . ≤ uv
(L).

According to the Equation (8), the threshold κv is defined
as the (1− α)-quantile of the ordered validation scores:

κv = uv
(⌈(1−α)(1+L)⌉).

This definition ensures that at most α·(L+ 1) samples from
the validation set exceed κv .

For any test sample j ∈ Dtest, the p-value is defined as:

p-value
(
evj

)
=

1 +
∑

l∈Dval
1
{
uv
j ≥ uv

l

}
L+ 1

.

This p-value represents the fraction of validation uncer-
tainty scores less than or equal to uv

j . If uv
j > κv , the null

hypothesis uv
j ≤ κv is rejected, classifying j as unreliable,

and then we have:

p-value
(
evj

)
=

1 +
∑

l∈Dval
1
{
uv
j ≥ uv

l , u
v
j > κv

}
L+ 1

=
1 +

∑
l∈Dval

1 {uv
l > κv}

L+ 1

=
1 + L− ⌈(1− α) (L+ 1)⌉

L+ 1

≤ α.

3. Marginal Validity
The p-values are marginally valid because κv is constructed
from the (1− α)-quantile of Dcal. Specifically:

P
(
uv
j > κv) ≤ α ⇒ P

(
p-value

(
evj

)
≤ α

)
≤ α.

Thus, the probability of incorrectly classifying a test sample
as unreliable (a false discovery) is bounded by α.
4. False Discovery Rate (FDR)
False positives (FP) are defined as:

FP =
∑

j∈Dtest

1
{
j ∈ Sv, uv

j > κv
}
.

Since P
(
uv
j > κv

)
≤ α, the expected number of false posi-

tives (FP) is bounded by:

E [FP] ≤ α · nulls,

where nulls is the number of null hypotheses in Dtest. The
total discoveries |Sv| include both false positives (FP) and
true positives (TP). Thus |Sv| = FP + TP.

The FDR is defined as:

FDR (Λ (κv)) = E
[

FP

max {1, |Sv|}

]
.

since Sv ≥ FP, and the numerator FP is bounded by
marginal validity, we have:

FDR ≤ α.

5. High-Probability Control of FDR
To ensure that FDR is controlled with high probability 1−δ,
consider the variability in κv:
• The threshold κv is determined from the validation set
Dval, whose scores are exchangeable.

• Using concentration inequalities (e.g., Hoeffding’s in-
equality or Dvoretzky-Kiefer-Wolfowitz (DKW) inequal-
ity), the deviation of κv from its expectation is bounded
with probability 1− δ.

Specifically, using the Dvoretzky-Kiefer-Wolfowitz (DKW)
inequality, we can bound the deviation of the empirical
CDF from the true CDF. Let F (u) be the true cumulative
distribution function (CDF) of the uncertainty scores. For a
sample of size L, the DKW inequality states:

P
(
sup
u

∣∣∣⌢FL (u)− F (u)
∣∣∣ > ϵ

)
≤ 2e−2Lϵ2 ,

where
⌢

FL (u) is the empirical CDF.



Applying this to κv , the probability that the estimated
(1− α)-quantile deviates from the true (1− α)-quantile by
more than ϵ is bounded by:

P
(∣∣κv − F−1 (1− α)

∣∣ > ϵ
)
≤ 2e−2Lϵ2 ≤ δ,

where δ = 2e−2Lϵ2 . This guarantees that κv is concen-
trated around the true (1− α)-quantile with high probabil-
ity, provided the validation set is sufficiently large.

Thus, the probability of FDR exceeding α is:

P (FDR (Λ (κv)) > α) ≤ δ.

Equivalently:

P (FDR (Λ (κv)) ≤ α) ≥ 1− δ.

6. Special Case: α < 1/(L+ 1)
when α < 1/(L+ 1) (a rare situation in the wild), the
threshold κv is undefined (or can be defined as infinity) be-
cause the validation set is too small to reliably estimate the
(1− α)-quantile. This highlights the need for: 1) A suffi-
ciently large validation set such that (L+ 1) > 1/α; 2) A
practical lower bound on α based on the size of Dval.

Note, when κv is defined as infinity, indicating that no
test samples will satisfy uv

j > κv . This effectively means
no discoveries will be made, which trivially satisfies FDR
control but is not useful in practice.
To sum up, Λ (κv) is an (α, δ)-risk-controlling discovery
(RCD) function.

□

Proposition 2. Applying evidence filtering improves the
classification performance of TMVC fusion strategies (e.g.,
BCF, A-CBF, or ABF), under the assumption that unreliable
evidence provides incorrect information in the wild.

Proof: For k = 1, . . . ,K, let t denote the index of the
ground-truth class, and {eoik}

K
k=1 be the initial evidence

from some views. Consider an abnormal view (i.e., noisy or
corrupted) producing unreliable evidence {evik}

K
k=1, where

k̃ = argmax
k

{evik}
K
k=1 , k̃ ̸= t. Assume this unreliable ev-

idence is strong enough to change the predicted label of
the initial evidence to k̃, leading to incorrect classification.
Let {eik}Kk=1 and {ēik}Kk=1 be the evidence after fusion of
{evik}

K
k=1 with the initial evidence {eoik}

K
k=1, with and with-

out filtering, respectively. Taking A-CBF as an example, the
prediction probabilities for class t under the two scenarios
are given as follows:
With filtering:

pit =
eit

K∑
k=1

eik + 1

=
eoit + α · evit

K∑
k=1

(eoik + α · evik) + 1

,

Without filtering:

p̄it =
ēit

K∑
k=1

ēik + 1

=
eoit + evit

K∑
k=1

(eoik + evik) + 1

.

Similarly, the prediction probabilities for the incorrect
class k̃ are:

pik̃ =
eik̃

K∑
k=1

eik + 1

=
eo
ik̃
+ α · ev

ik̃
K∑

k=1

(eoik + α · evik) + 1

,

p̄ik̃ =
ēik̃

K∑
k=1

ēik + 1

=
eo
ik̃
+ ev

ik̃
K∑

k=1

(eoik + evik) + 1

.

The difference between the probabilities for t and k̃ is:

∆p = pit − pik̃ =
(eoit + α · evit)−

(
eo
ik̃
+ α · ev

ik̃

)
K∑

k=1

(eoik + α · evik) + 1

,

∆p̄ = p̄it − p̄ik̃ =
(eoit + evit)−

(
eo
ik̃
+ ev

ik̃

)
K∑

k=1

(eoik + evik) + 1

.

Filtering scales the unreliable evidence by α, so the nu-
merators satisfy:

(eoit + α · evit)−
(
eo
ik̃
+ α · ev

ik̃

)
> (eoit + evit)−

(
eo
ik̃
+ ev

ik̃

)
.

Filtering also reduces the total contribution of unreliable
evidence in the denominator:

K∑
k=1

(eoik + α · evik) + 1 <

K∑
k=1

(eoik + evik) + 1.

Both the numerator and denominator changes lead to the
inequality: ∆p > ∆p̄. Similarly, for both ABF and BCF
fusion strategies, we also observe that ∆p > ∆p̄ because
filtering reduces the impact of unreliable evidence, denoted
as α · evik. This results in the ground-truth class t being
more likely to have the highest prediction probability, i.e.,
pit > pik̃, ∀k̃ ̸= t. As a consequence, the classification
error rate is reduced, leading to an overall improvement in
performance. □

Proposition 3. The overall uncertainty of multi-view results
generated by TMVC fusion strategies with evidence filtering
for unreliable evidence will exhibit greater uncertainty than
fusion without evidence filtering.



Proof: For k = 1, . . . ,K, let {eoik}
K
k=1 be the initial ev-

idence from some views. Consider an abnormal view with
unreliable evidence {evik}

K
k=1, let {eik}Kk=1 and {ēik}Kk=1

be the evidence after fusion of {evik}
K
k=1 with the initial ev-

idence {eoik}
K
k=1, with and without filtering, respectively.

Taking A-CBF as an example, the overall uncertainty
score under the two scenarios is given by:

ui =
K

K∑
k=1

(eoik + α · evik) + 1

, ūi =
K

K∑
k=1

(eoik + evik) + 1

.

Since α ∈ (0, 1), filtering reduces the contribution of unre-
liable evidence evik in the denominator, resulting in ui > ūi.
This demonstrates that evidence filtering increases the over-
all uncertainty score compared to fusion without filtering
for unreliable views.

Similarly, for the BCF and ABF fusion strategies,
filtering with α < 1 consistently reduces the impact of
unreliable evidence in the denominator, leading to the
inequality ui > ūi. This indicates that evidence filtering
amplifies the model’s uncertainty for unreliable views, mak-
ing it more cautious in its predictions and less influenced
by noisy views. □


