
EquiPose: Exploiting Permutation Equivariance
for Relative Camera Pose Estimation

Supplementary Material

This supplementary material is organized as follows:
Sec. S6 gives the proofs of Theorems 1 and 2 in Sec. 3.1
of the main text. Sec. S7 provides details about datasets,
baselines, and implementations. Sec. S8 provides additional
experimental results and analysis.

S6. Theorem Proofs
Here, we give the proofs of two theorems regarding the
geodesic mean in rotations i.e.:
Definition 3 (Geodesic mean of rotations). Given a set of
rotations {Ri}ni=1, their geodesic mean S is defined as:

S = G(R1, R2, · · · , Rn) = argmin
S∈SO(3)

n∑
i=1

∥ log(RT
i S)∥22,

(16)
where ‘log(·)’ is the mapping from an element in the Lie
group to its corresponding Lie algebra.

From the above definition, the following two theorems
hold:
Theorem 1. Given a set of rotations {Ri}ni=1,
it always holds that: G(Rσ(1), Rσ(2), · · · , Rσ(n)) =
G(R1, R2, · · · , Rn) for any permutation σ.

Proof. The theorem could be straightforwardly proved us-
ing the commutative law of addition:

G(R1, R2, · · · , Rn)

= argmin
S∈SO(3)

n∑
i=1

∥ log(RT
i S)∥22

= argmin
S∈SO(3)

n∑
i=1

∥ log(RT
σ(i)S)∥

2
2

= G(Rσ(1), Rσ(2), · · · , Rσ(n)).

(17)

Theorem 2. Given a set of rotations {Ri}ni=1, if S ∈ SO(3)
is the geodesic mean, then ST is the geodesic mean of
{RT

i }.

Proof. Let S be the geodesic mean of the set of rotations

{RT
i }, i.e., S = argmin

S∈SO(3)

n∑
i=1

∥ log(RT
i S)∥22. Transposing

S, we have:

ST = argmin
S∈SO(3)

n∑
i=1

∥ log(RT
i S

T)∥22 (18)

Since ∥ log(XTY )∥2 = ∥ log(XY T)∥2,∀X,Y ∈ SO(3)
[23], we have:

argmin
S∈SO(3)

n∑
i=1

∥ log(RT
i S

T)∥22 = argmin
S∈SO(3)

n∑
i=1

∥ log(RiS)∥22

(19)
Then, according to Eqs. (18) and (19), we have

ST =

n∑
i=1

∥ log(RiS)∥22

= argmin
S∈SO(3)

G(RT
1 , R

T
2 , · · · , RT

n )

(20)

which completes the proof.

S7. Details
S7.1. Dataset Details

In this work, we have used three datasets for evaluation, in-
cluding the ScanNet [11], the 7-Scene [49], the 12-Scene
[52] and the Mapfree relocalization datasets [1]. These
three datasets all provide ground truth camera poses and
depth images.

For training on ScanNet, we sample 2M image pairs that
have the overlap scores in [0.4,0.8] following [48, 50]. For
evaluation, we use the same 1500 test image pairs as in [48,
50]. The 7-Scene and 12-Scene datasets are only used for
evaluation, and we sample 720 pairs of images from each
of them with overlap scores in [0.4,0.8]. For the Mapfree
dataset [1], we follow the official setting in [1], i.e., we train
the models on 460 training scenes and evaluate them on the
130 testing scenes.

S7.2. Baseline Details

Here, we introduce the overall architecture of the baseline
models:
• ExtremeRotation [6] adopts a Siamese ResUNet [58] as

the feature encoder. The extracted features are aggregated
via a correlation volume, which is then decoded into the
relative rotation parameterized using Euler angles.

• Reg6D [6, 62] adopts a Siamese ResNet architecture [25]
as the feature encoder. The extracted features are simply
concatenated for aggregation, and then decoded into the
rotation parameterized in a 6D space [62]. Same with
ExtremeRotation, it only outputs the rotation.

• EightVit [46] adopts the Siamese ResNet [25] followed
by several blocks from ViT [16] with self-attention as the
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ScanNet
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MP6D:               6.1°/1.8m
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Figure S5. Additional qualitative results on ScanNet [11]. We compare the three baseline models EightVit [46], MP6D [1], GRelPose
[28], and their implementation under the EquiPose framework. For each case, we show the image pairs on the top and rotation/translation
errors on the bottom. +EquiPose: the models are implemented under EquiPose only during the inference stage. +EquiPose†: the models
are further fine-tuned under EquiPose.

feature encoder. The features are further aggregated with
an essential matrix module and decoded into the 6D pose.

• MF6D [1] adopts the Siamese ResUNet [58] to encode
images into feature maps, and then the feature map of the
second image is warped and concatenated with the first
one for aggregation. The aggregated features are finally
flattened and decoded into the 6D pose via an MLP.

• GRelPose [28] adopts LoFTR [50] as the feature encoder
to extract features from the two images respectively, and
the features are warped together for aggregation. The ag-
gregated features are flattened and decoded into the 6D
pose via several MLPs.

Accordingly, the architectures of all the above baseline
models could be described with the general pipeline as plot-



ted in Fig. 3a of the main text. Thus, the introduced feature
permutation strategy can be applied to all of them.

S7.3. Implementation Details

The evaluated baseline models in this work include Ex-
tremeRotation [6], Reg6D [62], EightVit [46], MF6D [1],
GRelPose [28].
Training Loss. For the baselines EightVit, MF6D, GRel-
Pose, we use an L1 loss for training as done in [1]:

L1 = ∥R− R̂∥1 + λ∥t− t̂∥1, (21)

where R and t are the predicted relative rotation and trans-
lation from the model. R̂ and t̂ are the ground truth relative
rotation and translation. λ is a weighting factor set to 1 as
done in [1] for all experiments.

For Reg6D which only predicts the relative rotation, we
only use the rotation part of the L1 loss in Eq. (21).

For ExtremeRotation [6] which outputs the discrete
probability distribution of three Euler angles, we use the
cross-entropy loss as done in [6].
Optimization Details. All the models are trained on an
RTX 3090 Ti GPU (24GB). Following [1], we use the Adam
optimizer with a learning rate of 1×10−4 and a batch size of
10 for optimization. The models are optimized for around
150M steps. During fine-tuning under EquiPose, we use
a learning rate of 1 × 10−5. For ExtremeRotation which
outputs the discrete probability distributions of three Euler
angles, we use soft argmax instead of hard assignment [6]
to compute the Euler angles for gradients to backpropagate
under EquiPose.
Inference Time. The inference time is measured on an
RTX 3090Ti GPU (24GB). For all the models, we use a
batch size of 20. To obtain the inference time, we first per-
form 20 reruns of warm-up. Then, the time costs are aver-
aged over another 100 reruns.

S8. Additional Experiments and Analysis

S8.1. Additional Visualization Results

In Fig. S5, we present additional visualization results on the
ScanNet dataset [11]. As seen from this figure, the proposed
EquiPose framework could improve the performances of
different models. Notably, the improvement is particularly
pronounced for challenging samples, such as image pairs
exhibiting large viewpoint changes and texture-less regions.

S8.2. Comparison of dR and dt

In Sec. 3 of the main text, we have theoretically proved that
under the EquiPose framework, an arbitrary relative pose
estimation model could achieve the pose permutation equiv-
ariant (PPE) property, i.e., the estimated pose from image I1

to image I2 (denoted as P12) should be the inverse of the rel-
ative pose from I2 to I1 (denoted as P21). Here, we further
confirm it by empirical experiments.

We adopt the test set of ScanNet which contains 1500
image pairs in total, and use EightVit [46], MF6D [1],
GRelPose [28] to estimate P12 and P21 for these image
pairs. As done in Sec. 1 of the main text, we compute the
dR and dt as follows:

dR = arccos((tr(R21R12)− 1)/2)

dt = ∥t21 +RT
12t12∥2

(22)

The histograms of dR and dt among the 1500 pairs for
these baseline models as well as their implementations un-
der EquiPose are shown in Fig. S6. Moreover, we also
compute the mean and standard deviation values of dR and
dt respectively, which are reported in the tables under each
subfigure in Fig. S6.

As seen from the subfigures and tables, the baseline
models generally do not satisfy the PPE property (dR and
dt are generally larger than zero). However, when im-
plemented under the proposed EquiPose framework, these
models could effectively capture this property (dR and dt
are equal to zero). These results further validate the PPE
property of EquiPose empirically.

S8.3. Fine-Grained Analysis

In the main text, we have conducted comparative evaluation
on the overall accuracy between the baseline models and
EquiPose, where the metrics are computed and averaged
over all image pairs in the datasets. Here, we provide a fine-
grained analysis by evaluating the performance of EquiPose
on each individual image pair.

We first discuss the limitation of the existing evaluation
criterion which prevents a more fine-grained analysis, and
then introduce a novel evaluation criterion to address the is-
sue. Next, we compare our method with the baseline models
under this criterion.

S8.3.1 Expectation Error

According to the PPE property of relative camera poses, i.e.,
P12 = P−1

21 , the model could obtain the relative camera
pose P12 of an image pair {I1, I2} via the following two
input orders: {I1, I2} and {I2, I1}.

However, since existing models do not satisfy the PPE
property as demonstrated in Sec. 1, the estimated pose from
the above two orders by existing methods are generally in-
consistent, and would result in a different evaluation result.
Specifically, given an arbitrary input order of an image pair,
the estimation would fall into one of the two cases:

Case #1: The adopted input order results in a better esti-
mation than the reverse order.
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Figure S6. Distribution of the dR and dt estimated by existing models EightVit [46], MF6D [1], GRelPose [28], and their implementation
under EquiPose. We also report the mean and standard deviation of dR and dt respectively of each method.
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Figure S7. Distribution of the reliability scores (see Sec. S8.3.2 for details) of EquiPose, evaluated on the ScanNet dataset across three
baseline models: EightVit [46], MF6D [1], and GRelPose [28]. A positive reliability score indicates that EquiPose improves the

reliability of the baseline model, while a negative reliability score indicates that EquiPose lowers the reliability of the baseline model.
The percentages of samples with negative and positive reliability scores are also reported. In most cases, EquiPose achieves a positive
reliability score, suggesting that EquiPose improves model reliability in most cases.

Case #2: The adopted input order results in a worse es-
timation than (or the same with) the reverse order.

This is to say, when comparing the performances of two
methods on an image pair, one method might fall into Case
#1, while the other method might fall into Case #2.

Generally, when the evaluation is conducted on a large
dataset with hundreds or thousands of image pairs, this
should not be considered as an issue: According to the
law of large numbers, the input orders of these image pairs
would not favor a specific method overall if the input order

of image pairs is constructed randomly (actually, it is done
in the main text of this work as well as other existing works
[1, 19, 26, 28, 46]).

However, when the evaluation and analysis are con-
ducted under a more fine-grained level, i.e., on each indi-
vidual image pair, it may hamper us to make a meaningful
comparison. Consider the following case:

Given an image pair with input order of {I1, I2}, model
A and model B have a rotation error of 5◦ and 4◦ respec-
tively. When the input order is reversed to {I2, I1}, model



Baseline Rotation↑ Translation↑
>0 >0.05 >0.1 >0.2 >0 >0.05 >0.1 >0.2

EightVit [46] 99.6 17.8 9.3 4.4 85.0 20.1 10.6 4.6
MF6D [1] 99.7 52.5 37.5 22.7 87.8 53.3 37.9 22.4
GRelPose [28] 99.5 32.7 19.1 9.9 89.8 38.9 24.5 12.0

Table S6. The percentage of reliability scores of EquiPose that are larger than a certain threshold over three baseline models, including
EightVit [46], MF6D [1] and GRelPose [28].

A and model B have a rotation error of 6◦ and 80◦ respec-
tively. This highlights a limitation of the current evaluation
criterion, which only considers one input order: there is a
probability of 50% to observe model A performing better
than model B, and a probability of 50% to observe model B
performing better than model A.

In real-world applications, where the optimal input order
is unknown, model A would likely be preferred, since it on
average (or in expectation, from a probabilistic perspective)
produces an error of 5◦+6◦

2 = 5.5◦, while model B produces
an error of 4◦+80◦

2 = 42◦, indicating that model A would
be more reliable overall.

The above case and analysis prompts us to propose the
expectation error as an alternative evaluation criterion on
each individual image pair {I1, I2}:

E = (E12 + E21)/2 (23)

where E12 and E21 are the rotatation (or translation) errors
from input order {I1, I2} and {I2, I1} respectively.

Straightforwardly, a lower expectation error indicates
that the model is more reliable, and a higher expectation
error indicates that the model is less reliable.

S8.3.2 Fine-Grained Comparison under Expectation
Error

To analyze the performance of EquiPose on each image
pair, we consider the difference between the expectation er-
rors of the baseline model and its EquiPose implementation
as follows (named as the Reliability Score):

SR = (Eb − Eeq)/Eb ∈ (−∞, 1], (24)

where Eb denotes the expectation rotation (or translation)
error from the baseline model, Eeq denotes the expectation
rotation (or translation) error when the baseline models are
implemented under the proposed EquiPose framework. The
denominator is used to compute the relative improvement.
Note that since the proposed EquiPose intrinsically holds
the PPE property, its expectation error is actually its true
error.

According to the above definition, the reliability score
has the following four properties:

• When SR > 0, i.e., Eb > Eeq, EquiPose could improve
the reliability of rotation (or translation) estimation of the
baseline model.

• When SR = 0, i.e., Eb = Eeq, EquiPose does not have
an impact on the reliability of rotation (or translation) es-
timation.

• When SR < 0, i.e., Eb < Eeq, EquiPose decreases
the reliability of rotation (or translation) estimation of the
baseline model.

• The magnitude of the reliability score SR measures the
reliability of EquiPose, i.e., a larger positive SR indicates
EquiPose improves the estimation better, and vice versa.
We conduct the evaluation on the test set of ScanNet

[11], which contains 1500 image pairs in total. The reliabil-
ity scores of EquiPose over three baseline models (includ-
ing EightVit [46], MF6D [1] and GRelPose [28]) are com-
puted. Then, the histograms of the reliability scores over
the three baseline models are plotted in Fig. S7. Besides,
we also compute the percentage of image pairs whose re-
liability scores are larger than the thresholds {0, 0.05, 0.1,
0.2}, which are reported in Tab. S6.

As seen from Fig. S7 and Tab. S6, EquiPose could
achieve a positive reliability score in most cases in terms of
both rotation and translation, indicating EquiPose could im-
prove the model performance generally. Moreover, in many
cases the improvements are significant. For example, in the
case of MF6D, EquiPose could achieve a relative improve-
ment of more than 10% in 37.5% situations, and achieve a
relative improvement of more than 20% in 22.7% situations.

The above results demonstrate that EquiPose has a high
chance to improve the reliability of existing models, with
notable improvements in many cases.
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