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1. Derivation of Chain-Rectifying Algorithms
The Chain-Rectifying Algorithms presented in this study
significantly enhance the visual coherence and elimination
of artifacts in the erase inpainting task. A critical aspect of
this enhancement is the domain transform from the noise
ϵ predicted by standard diffusion techniques to predicted
noise ϵθ generated by our method. In the subsequent sec-
tions, we will thoroughly elucidate this difference and its
implications for the inpainting process.

Based on Equation 6 and Equation 7 in the main text of
the paper, we can obtain
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Additionally, by transforming Equation 7, we can derive
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Substituting Equation 2 into Equation 7 in the main text
and replacing λt with 1− ᾱt according to the experimental
setup, we can obtain
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By combining Equation 1, Equation 2, and Equation 3, we
can further infer that
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According to the DDIM inversion [10], we can also ob-
tain

xmix
t−1 =

√
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where ϵθ is the prediction of our erase diffusion model.
Finally, by combining Equation 4 and Equation 5, we

can obtain
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From the equation 6, we can find that our network adjusts
the standard predictions ϵ by leveraging the object informa-
tion xobj

0 and the latent state xmix
t .

2. Comparison with Standard Diffusion
To perform a thorough comparative analysis of the per-
formance between the standard diffusion training method
and the erase diffusion training method in the context of
the erase inpainting task, we first trained the SD2-Inpaint
model (hereafter referred to as StandDiff) using the conven-
tional training approach on the OpenImages V5 dataset [3].
The masking strategies employed include rectangular, el-
liptical, and irregular masks, as well as their random com-
binations. Additionally, in subsequent experiments, we in-
vestigated the impact of constraining the masked regions to
the background areas of the original images (designated as
BGDiff). This approach is intended to enhance the SD2-
Inpaint model’s tendency to recover background informa-
tion during the denoising process, thereby visually improv-
ing the effectiveness of eliminating the target object. Fig-
ure 1 presents the relevant masking strategies, while the
other training methodologies remain consistent with those
utilized in EraDiff to ensure a fair comparison.

Table 1 presents the relevant experimental results. The
data clearly indicate that the diffusion models trained us-
ing these methodologies achieve relatively low and com-
parable LPIPS scores, suggesting that these models ef-
fectively maintain visual coherence in the erased images,
which represents a significant advantage of diffusion-based
approaches. However, when employing the standard train-
ing method, the diffusion model exhibits suboptimal per-
formance in object elimination. Conversely, restricting the
masked regions during training to the background areas of
the original images leads to a noticeable improvement in
the model’s object elimination capabilities, although it still
falls short compared to EraDiff. This phenomenon arises
from the observation that both StandDiff and BGDiff em-
phasize the restoration of identical masked regions at each
time step during the training process. In contrast, EraDiff
introduces a subtle shift in these regions between the time



Method LPIPS Local FID GPT score

StandDiff 0.285 6.981 35.65%
BGDiff 0.259 6.588 51.06%
EraDiff w/o SRA 0.198 4.950 78.54%
EraDiff (ours) 0.192 3.799 83.43%

Table 1. Quantitative assessment of different training methods for
diffusion models on the OpenImages V5 test set. Optimal results
are highlighted in bold, with runner-up performance underlined.

Figure 1. Masking strategies employed in the training processes
of StandDiff (first row) and BGDiff (second row).

steps t and t− 1. This variation can be interpreted as a mi-
nor perturbation within the masked areas, which enhances
the model’s capacity for continuous reasoning as opposed to
merely reproducing prior outputs. Consequently, during the
denoising process, when artifacts manifest in the erasure-
target region, EraDiff dynamically adjusts to progressively
eliminate these artifacts. Conversely, models trained using
previous methodologies tend to rely heavily on and rein-
force their descriptions, resulting in high tolerance for er-
ror pixels within the model. It is noteworthy that when t
is significantly large, the associated noise will also be sub-
stantial, leading to a higher probability of generating arti-
facts or other non-target content during denoising. There-
fore, these high-tolerance models exhibit limited capability
in eliminating unwanted objects. The experimental results
presented in Figure 3 of the main text further substantiate
this observation.

3. Supplementary Experiments
To enhance the credibility of the comparison results be-
tween baseline models and EraDiff, we introduce a new
testing dataset, FSS-1000 [4]. The FSS-1000 dataset en-
compasses 1,000 distinct categories with a total of 10,000
samples. It features a rich variety of images of animals and
everyday objects, in addition to items such as merchandise
and logos, which are relatively underrepresented in other
existing segmentation datasets. Regarding evaluation met-
rics, we utilize LPIPS, FID, and Local FID to measure vi-

Method FID↓ LPIPS↓ Local FID↓
SD2-Inpaint 6.982 0.248 1.201
SD2-Inpaint∗ 6.874 0.231 1.053
PowerPaint 12.885 0.395 1.759
Inst-Inpaint 7.320 0.336 2.284
LaMa 8.093 0.142 1.185
EraDiff (ours) 7.751 0.127 0.869

Table 2. Quantitative evaluation of baseline models and EraDiff
on the FSS-1000 dataset. The optimal results are indicated in bold,
and the sub-optimal results are indicated with underlines.

Method Superior Comparable Inferior

SD2-Inpaint 2.42% 19.36% 78.22%
SD2-Inpaint∗ 3.78% 25.97% 70.25%
LaMa 12.93% 33.16% 53.91%

Table 3. Quantitative results of FSS-1000 dataset among SD2-
Inpaint, SD2-Inpaint∗, LaMa, and EraDiff. This table delin-
eates a comparative analysis of the elimination performance re-
sults obtained by these methodologies relative to ours, highlight-
ing whether their outcomes are superior, comparable, or inferior
to those achieved by our approach.

sual coherence in erased images, which is consistent with
the metrics used in the OpenImages V5 dataset [3].In ad-
ditional experiments, we employ GPT-4o to evaluate the
effectiveness of the top three performing models in visual
coherence for eliminating erasure targets. All models are
compared equitably, without any fine-tuning on the FSS-
1000 dataset. Tables 2 and 3 present the relevant experi-
mental results. Additionally, a visual comparison of these
methods is illustrated on the FSS-1000 dataset in Figure 2.

The results presented in Table 2 illustrate the perfor-
mance of the models SD2-Inpaint, SD2-Inpaint*, LaMa,
and EraDiff, all of which demonstrate commendable out-
comes as assessed through the LPIPS and FID metrics. No-
tably, EraDiff attains the best scores in both LPIPS and Lo-
cal FID, further validating its capability to ensure visual co-
herence in erased images while maintaining high visual fi-
delity in the erased regions. Table 3 offers a comparative
analysis of the performance of SD2-Inpaint, SD2-Inpaint*,
and LaMa relative to our proposed model, EraDiff, in elim-
inating specified objects. The results unequivocally demon-
strate that these alternative models exhibit significantly in-
ferior performance relative to EraDiff. One of the primary
reasons for this performance gap is the presence of unde-
sirable artifacts in the erased regions of images processed
by these alternative methods. Such limitations are visually
substantiated by the evidence presented in Figure 2. These
findings further substantiate that EraDiff, through the cali-
bration of sampling pathways, effectively accomplishes tar-
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Figure 2. Qualitative results of FSS-1000 dataset compared among SD2-Inpaint [6], SD2-Inpaint with prompt guidance [6], Power-
Paint [15], Inst-Inpaint [13], LaMa [11], and our approach.

get removal during the task of erase inpainting and excels
in achieving both high visual quality and consistency in the
generated images.

4. Generalization in Varied Scenarios

To rigorously evaluate the generalization capability of
EraDiff, we conducted comprehensive experiments utiliz-
ing two distinct datasets, each exhibiting unique distribu-
tion characteristics. The first dataset comprises marketable
product images sourced from online e-commerce platforms,
while the second dataset includes cartoon character images
drawn from the publicly available ATD-12k dataset [9]. We
meticulously analyzed the performance of EraDiff in com-
parison to baseline models, with the resulting visualizations
provided in Figures 5 and 6, respectively. These compar-
isons highlight the efficacy of our proposed model across
diverse image distributions.

5. Experimental Details

Data synthesis. As shown in Figure 3, the data synthe-
sis process required during the training phase is as follows:
First, we employed matting techniques [1, 12] to extract
the foreground xobj

0 from the xori
0 and obtained a corre-

sponding mask necessary for distinguishing between the
foreground and background. Next, we scaled the xobj

0 by
a random ratio ranging from 50% to 120%, followed by a
random rotation from 0 to 360 degrees. Finally, we utilized
the earlier obtained mask to seamlessly mix-up the modified
xobj
0 and xori

0 in the background.

Training. The training process utilized a batch size of 32
across a cluster of 16 A100 GPUs, for a total of 5 epochs.
The noise scheduler was set to DDIM [10]. In the exper-
iment, we fine-tuned the U-Net [7] of SD2-Inpaint, while
the parameters of the other modules were frozen.

Inference. During the inference phase, we employed the
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Figure 3. Data synthesis process for model training in this study.

Original Image Masked Input Erased Output

Figure 4. Failure cases of our approach.

DPMSolverMultistepScheduler [5]. Importantly, we delib-
erately omitted the use of classifier-free guidance (CFG)
and auxiliary prompts to simplify the reverse process. All
images in this paper were generated at a resolution of
512 × 512 pixels, utilizing 20 denoising steps with a de-
noising strength of 0.95.

6. More Quantitative Results

To comprehensively evaluate EraDiff’s performance in ob-
ject elimination, we created a new test set of 10,000 samples
using the original data synthesis method from training. This
set is based on the OpenImages V5 dataset, with synthe-
sized images requiring objects to be removed and original
images serving as the ground truth for comparison.

In this experiment, we introduced novel evaluation met-
rics to thoroughly assess the quality of both object elimina-
tion and image coherence. Specifically, we employed two
aesthetic evaluation metrics, AES [8] and NIMA [2], as well
as PIDS and UIDS [14], which measure the distinction be-

Method PIDS(%) UIDS(%) AES NIMA

SD2-Inpaint 13.67 23.62 4.721 5.29
SD2-Inpaint∗ 14.35 22.19 4.793 5.536
PowerPaint 4.36 11.28 4.814 5.205
Inst-Inpaint 0.0 0.500 4.459 5.267
LaMa 18.04 25.92 4.616 5.605
EraDiff 25.25 33.72 5.082 5.988

Table 4. Quantitative evaluation of baseline models and EraDiff.

Method Params RT(s)

SD2-Inpaint 1.29B 2.61
SD2-Inpaint∗ 1.29B 2.63
PowerPaint 2.08B 22.86
Inst-Inpaint 0.51B 1.80
LaMa 0.05B 0.43
EraDiff 1.29B 1.74

Table 5. Comparison of model parameters and inference time.

tween the erased images and the target images.
The experimental results in Table 4 demonstrate that

EraDiff outperforms the baseline models. This indicates
that EraDiff not only effectively removes objects but also
maintains the visual consistency of the resulting images.

7. Complexity Evaluation
In this section, we evaluated the computational complexity
of the EraDiff model with that of baseline models. The re-
sults of this analysis are presented in Table 5. We found that
EraDiff exhibits a moderate level of both parameter count
and inference time. Specifically, because EraDiff shares the
same architectural structure as SD2-Inpaint, their parame-
ter counts are identical. However, EraDiff benefits from re-
duced inference time due to the absence of CFG utilization,
enhancing its real-time performance efficiency.

8. Limitation and Failure Cases
The EraDiff method encounters certain challenges in some
situations, as illustrated in Figure 4. Specifically, for
document-type data erasure, it tends to produce text-like ar-
tifacts in the target erasure regions due to surrounding texts.
Additionally, the method may underperform in tasks involv-
ing completion. For instance, removing a coat from an in-
dividual and reconstructing the arm beneath may yield sub-
optimal results. Furthermore, when dealing with large-scale
background erasure (background replacement), the absence
of reference information often leads to less desirable out-
comes. We aim to address and overcome these limitations
in future research endeavors.
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Figure 5. Comparison of visualizations for baseline models and the proposed EraDiff in scenarios of marketable products.
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Figure 6. Comparison of visualizations for baseline models and the proposed EraDiff in scenarios of cartoon images.
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