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This document supports our main paper with detailed results
and comprehensive analyses. The document is organized as
below:
• Section A. We provide a detailed summary of benchmark-

ing datasets used in our experiments.
• Section B. We provide details of hyperparameters used in

our work.
• Section C. We report detailed results of comparing SWAT

with previous FSR methods for each benchmark dataset.
• Section D. We provide details on how we retrieve pre-

training data and compare different retrieval and filtering
methods.

• Section E. We compare different mixed sample data aug-
mentation methods and analyze the impact of the mixing
ratio within a batch.

• Section F. We validate the design of our SWAT by ablating
different stage-2 training strategies and comparing SWAT
with recent state-of-the-art finetuning methods.

• Section G. We provide further analyses on SWAT, in-
cluding the impact of training epochs, different classifier
initialization methods, and more detailed experimental
results.

• Section H. We provide analysis of the imbalance of re-
trieved data and the impact of retrieval size.

• Section I. We provide code and instructions for replicating
our experiments.

A. Summary of Datasets
We summarize the nine fine-grained datasets used in our

experiments in Table 6. Following [36, 59], we sample few-
shot data from the official training set and evaluate model
performance on the official test set, except for ImageNet
where we report performance on its validation set. We repeat
each experiment three times with three random seeds. Note
that we strictly follow the validation-free protocol [59] that
we do not use any validation data for hyperparameter tuning
or model selection.

B. Hyperparameter Setting
Stage-1 End-to-End Finetuning. We follow previous

work in other lines [33, 36, 43] to set hyperparameters in
our work. Specifically, for stage-1 end-to-end finetuning
of SWAT, we follow suggestions from [33, 69] to use a
smaller learning rate (1e-6) for updating the visual encoder

Table 6. Statistics of nine fine-grained datasets repurposed in
our work. We list the number of images in the official training,
validation, and test sets for each dataset. The protocol of few-shot
recognition samples few-shot data from the official training set;
we use them as our train set. We repeat the sampling and training
three times for each method with three random seeds. To evaluate
methods, we repurpose their official test set as our test set (except
on ImageNet where we use its official validation set as our test set).
We benchmark methods on our test sets. Note again that we do not
use any validation examples for model selection or hyperparameter
tuning; instead, we strictly adhere to the realistic validation-free
protocol for few-shot research [59].

dataset # cls official-train official-val official-test task

Semi-Aves [61] 200 3,959 2,000 4,000 recognize birds
Flowers [41] 102 4,093 1,633 2,463 recognize flowers
Aircraft [39] 100 3,334 3,333 3,333 recognize aircrafts
EuroSAT [19] 10 13,500 5,400 8,100 classify satellite images
DTD [11] 47 2,820 1,128 1,692 recognize textures
OxfordPets [46] 37 2,944 736 3,669 recognize pets
Food101 [4] 101 50,500 20,200 30,300 recognize food
StanfordCars [32] 196 6,509 1,635 8,041 recognize cars
ImageNet [12] 1,000 1.28M 50,000 N/A large scale recognition

and a larger learning rate (1e-4) for the linear classifier. We
initialize the classifier weights using the text embedding
following [43] (cf. Table 14). For other hyperparameters,
we adopt the values reported in [36, 43] which include the
AdamW optimizer, a batch size of 32, weight decay of 1e-2,
and a cosine-annealing learning rate schedule with 50 warm-
up iterations. We do not do early stopping as we strictly
follow the validation-free protocol [59]. Instead, we train
for 50 epochs. The only exception is for ImageNet, we train
for 10 epochs due to the large amount of retrieved data for
its 1,000 classes. The temperature factor is learned during
the finetuning process with an initial learning rate of 1e-4
and the same cosine-annealing learning rate schedule. For
data augmentation, we mix retrieved data with few-shot data
using CutMix [76], following [45] to sample the mixing ratio
from a uniform distribution (α = 1.0 for beta distribution)
and apply CutMix with a probability of 0.5. Our few-shot
finetuning (FSFT) adopts the same set of training recipe.

Stage-2 Classifier Retraining. We use the same set of
hyperparameters and follow the practice in [43] to train for
10 epochs with a fixed temperature of 0.01. We initialize the
classifier in stage 2 using the learned classifier weights from
stage-1 end-to-end finetuning, following [33].

Baselines. For baseline methods, we reimplement Cross-
Modal Linear Probing [36] using the same hyperparameters
as in stage-2 classifier retraining and training for 50 epochs.
We obtain the results of CLAP [59] using OpenCLIP models
with its default hyperparameters. For other baseline methods



Figure 5. Comparison of SWAT with state-of-the-art zero-shot and few-shot methods. We show that simply finetuning the whole
visual encoder on few-shot data (our few-shot finetuning, green line) outperforms previous FSR methods while finetuning on retrieved data
(orange line) underperforms zero-shot methods (e.g., ImageNet, EuroSAT, Food, DTD, and Stanford Cars) due to the large domain gap and
imbalanced distributions of retrieved data. Our SWAT (red line) outperforms previous methods by >6% w.r.t accuracy over nine datasets,
with significant improvements (20-30%) on challenging datasets like Semi-Aves and Aircraft. The results validate the effectiveness of our
SWAT in mitigating the domain gap and imbalanced distribution issues. We also show that our SWAT+ (red dashed line) which finetunes
both visual encoder and classifier on few-shot data in stage 2 improves further over SWAT (cf. Section F). Detailed performance on each
dataset is provided in Table 7. For Flowers, EuroSAT, DTD, and Stanford Cars datasets, we show that SWAT can be further improved by
1-6% of accuracy with proper filtering on the retrieved data (cf. Table 9).



Table 7. Detailed comparison of our SWAT and few-shot finetuning (FSFT) with state-of-the-art zero-shot and few-shot recognition
methods using OpenCLIP ViT/B-32 model. SWAT significantly outperforms previous few-shot recognition methods by 6% across nine
datasets. We also include the results of FSFT with and without CutMix, as well as SWAT+ where we finetuning the whole model rather than
only the classifier on few-shot data in the second stage (cf. Section F). We highlight the best number in bold and underline the second best.
Superscripts mark improvements compared to previous state-of-the-art FSR method CLAP [59].

shots strategy methods Semi-Aves Flowers Aircraft EuroSAT DTD Pets Food Cars ImageNet average

0
prompting

OpenCLIP [10] 8.4 68.2 17.1 51.1 53.5 88.7 77.2 79.2 63.0 56.3
REAL-Prompt [43] 43.4 76.0 18.0 56.9 59.2 88.7 77.1 80.6 63.6 62.6

retrieval-augmented REAL-Linear [43] 49.2 79.4 27.3 51.5 61.0 89.7 78.0 81.7 65.5 64.8

4

prompt-learning
CoOp [83] 38.1 86.1 20.6 68.6 53.9 86.7 73.5 62.7 58.5 61.0
PLOT [8] 37.2 87.8 22.4 72.4 56.0 88.6 77.2 63.4 61.5 62.9

adapter-based

CLIP-Adapter [15] 39.2 85.3 23.0 72.5 47.2 80.0 72.1 61.0 55.7 59.6
TIP-Adapter [78] 37.4 69.8 19.6 54.3 53.5 82.3 74.7 57.7 60.2 56.6
TIP-Adapter (f) [78] 42.4 74.4 21.9 66.8 58.0 85.5 75.3 61.1 61.5 60.8
TaskRes(e) [75] 43.2 89.4 25.9 73.0 58.4 84.6 74.5 64.7 58.0 63.5
CrossModal-LP [36] 29.1 88.9 25.1 74.8 62.2 88.3 76.7 80.7 63.2 65.4
CLAP [59] 34.0 90.1 28.0 74.7 63.0 87.0 76.7 84.9 64.0 66.9

finetuning-based

FSFT (ours) 47.5+13.5 92.5+1.4 27.9−0.1 81.6+6.9 66.6+3.6 88.7+1.7 75.8−0.9 81.5−3.4 62.3−1.7 69.4+2.5

FSFT w/ CutMix (ours) 48.0+14.0 92.2+1.1 28.8+0.8 81.8+7.1 66.7+3.7 89.0+2.0 76.1−0.6 82.5−2.4 62.4−1.6 69.7+2.8

SWAT (ours) 58.5+24.5 90.6+0.5 55.7+27.7 83.2+8.5 58.3−4.7 91.3+4.3 77.3+0.6 81.1−3.8 65.8+1.8 73.5+6.6

SWAT+ (ours) 59.9+25.9 94.2+4.1 55.6+27.6 83.4+8.7 61.5−1.5 91.6+4.6 77.9+1.2 83.7−1.2 66.6+2.6 74.9+8.0

8

prompt-learning
CoOp [83] 42.0 91.3 26.6 77.1 59.7 85.4 71.6 67.6 60.4 64.6
PLOT [8] 41.4 92.4 26.2 78.2 61.7 87.4 75.3 67.0 61.9 65.7

adapter-based

CLIP-Adapter [15] 41.2 91.9 27.9 78.5 61.4 83.4 72.1 66.8 57.0 64.5
TIP-Adapter [78] 39.8 73.8 19.4 62.3 51.5 82.3 73.9 57.6 59.4 57.8
TIP-Adapter (f) [78] 46.2 84.3 23.8 70.3 59.8 85.6 75.0 64.4 61.8 63.5
TaskRes(e) [75] 47.1 94.3 30.9 78.8 63.5 85.7 74.4 69.7 59.1 67.1
CrossModal-LP [36] 38.8 92.5 27.9 80.6 67.2 88.8 77.3 82.7 63.1 68.8
CLAP [59] 42.9 92.9 33.6 77.4 66.4 87.8 77.5 86.1 65.6 70.0

finetuning-based

FSFT (ours) 51.2+8.3 95.4+2.5 33.1−0.5 90.3+12.9 71.0+4.6 89.3+1.5 76.0−1.5 83.5−2.6 64.4−1.2 72.7+2.7

FSFT w/ CutMix (ours) 52.3+9.4 95.2+2.3 35.4+1.8 89.4+12.0 70.6+4.2 89.6+1.8 77.0−0.5 85.3−0.8 64.8−0.8 73.3+3.3

SWAT (ours) 60.8+17.9 94.1+1.2 59.1+25.5 89.2+11.8 62.6−3.8 90.8+3.0 77.5+0.0 83.5−2.6 66.6+1.0 76.0+6.0

SWAT+ (ours) 62.7+19.8 96.7+3.8 56.8+23.2 89.7+12.3 67.0+0.6 91.9+4.1 78.4+0.9 87.0+0.9 68.1+2.5 77.6+7.6

16

prompt-learning
CoOp [83] 46.1 94.5 31.4 83.7 62.5 87.0 74.5 73.6 61.9 68.4
PLOT [8] 44.4 94.8 31.5 82.2 65.6 87.2 77.1 72.8 63.0 68.7

adapter-based

CLIP-Adapter [15] 43.6 94.6 34.2 83.2 65.7 84.9 74.0 73.5 59.0 68.1
TIP-Adapter [78] 42.0 78.4 22.0 67.9 54.8 81.1 73.0 58.8 57.8 59.5
TIP-Adapter (f) [78] 50.1 91.2 29.3 76.6 64.6 85.4 74.7 69.6 62.3 67.1
TaskRes(e) [75] 48.5 96.1 36.5 83.7 65.9 86.3 75.4 75.4 60.9 69.9
CrossModal-LP [36] 46.8 95.5 32.4 85.2 71.9 89.1 77.5 84.7 63.1 71.8
CLAP [59] 49.2 94.8 39.1 81.7 69.9 88.4 78.5 87.8 67.1 72.9

finetuning-based

FSFT (ours) 55.3+6.1 97.0+2.2 37.0−2.1 94.0+12.3 73.3+3.4 89.5+1.1 77.1−1.4 85.7−2.1 66.7−0.4 75.12.2

FSFT w/ CutMix (ours) 56.5+7.3 97.1+2.3 42.7+3.6 94.3+12.6 73.4+3.5 89.6+1.2 78.2−0.3 87.8+0.0 66.9−0.2 76.3+3.4

SWAT (ours) 63.1+13.9 96.4+1.6 62.4+23.3 92.6+10.9 66.3−3.6 91.6+3.2 78.3−0.2 85.4−2.4 67.6+0.5 78.2+5.3

SWAT+ (ours) 64.7+5.5 98.3+3.5 60.2+21.1 93.5+11.8 69.8−0.1 92.2+3.8 79.1+0.6 89.2+1.4 69.3+2.2 79.6+6.7

that originally used an unrealistically large validation set for
hyperparameter tuning, we copy their results from [59].

C. Detailed Benchmarking Results

We compare our SWAT and few-shot finetuning (FSFT)
with prior state-of-the-art zero-shot [21, 43] and few-shot
recognition methods [36, 59] using the OpenCLIP ViT-B/32
model in Fig. 5 and list the detailed performance in Table 7.
We also include the performance of our few-shot finetuning
without CutMix. Results show that SWAT outperforms previ-
ous FSR methods by >6% accuracy over nine datasets, with

substantial gains (20-30%) on challenging datasets where
prior FSR accuracy [36, 59] was below 50% (e.g., Semi-
Aves and Aircraft). Additionally, SWAT with OpenCLIP
ViT-B/16 model (Table 8) yields even higher gains of 8%
over [59] across nine datasets.

Further Analysis. Our experiments show that SWAT
underperforms prior state-of-the-art FSR method [59] on
DTD and Stanford Cars. We conjecture that this is due to the
significant domain gaps in the retrieved data, finetuning on
which could hurt the model’s performance. This motivates
us to apply a filtering technique to remove excessively out-of-
domain retrieved data. Indeed, as shown in Table 9, applying



Table 8. Detailed comparison of SWAT with state-of-the-art zero-shot and few-shot recognition methods using OpenCLIP ViT-B/16
model. Results show that SWAT achieves larger performance gains (∼8%) over CLAP [59] with a larger backbone of ViT-B/16. We also
include the results of FSFT with and without CutMix, as well as SWAT+ where we finetuning the whole model rather than only the classifier
on few-shot data in the second stage (cf. Section F). We highlight the best number in bold and underline the second best. Superscripts mark
improvements compared to previous state-of-the-art CLAP [59].

shots strategy methods Semi-Aves Flowers Aircraft EuroSAT DTD Pets Food Cars ImageNet average

0
prompting

OpenCLIP [10] 8.5 68.3 17.9 50.1 49.2 91.0 82.7 83.6 67.2 57.6
REAL-Prompt [43] 51.2 76.0 19.4 51.2 56.7 91.0 82.8 84.4 67.6 64.5

retrieval-augmented REAL-Linear [43] 57.1 80.3 29.2 46.8 60.3 91.4 83.3 85.5 69.8 67.1

4

adapter-based
CrossModal-LP [36] 37.7 90.1 27.9 74.8 62.4 90.6 82.2 85.6 67.8 68.8
CLAP [59] 40.0 91.0 29.9 76.7 64.6 88.9 80.4 86.8 66.9 69.5

finetuning-based

FSFT (ours) 57.7+17.7 93.6+2.6 33.0+3.1 85.5+8.8 69.1+4.5 91.4+2.5 81.9+1.5 86.1−0.7 67.4+0.5 74.0+4.5

FSFT w/ CutMix (ours) 58.8+18.8 93.4+2.4 33.4+3.5 83.4+7.7 68.6+4.2 91.8+2.9 82.7+2.3 87.0+0.2 67.8+0.9 74.1+4.6

SWAT (ours) 69.2+29.2 93.8+2.8 66.5+36.6 84.2+8.5 62.6−2.0 92.9+4.0 83.3+2.9 85.2−1.6 70.6+3.7 78.7+9.2

SWAT+ (ours) 70.5+30.5 96.0+5.0 64.5+34.6 84.4+7.7 64.7+0.1 93.4+4.5 83.9+3.5 88.5+1.7 71.8+4.9 79.7+10.2

8

adapter-based
CrossModal-LP [36] 49.4 93.6 32.5 81.8 67.8 90.9 82.9 87.4 68.0 72.7
CLAP [59] 49.1 93.4 36.1 79.0 67.7 89.6 81.5 88.4 68.5 72.6

finetuning-based
FSFT (ours) 61.9+12.8 96.6+3.2 39.6+3.5 90.9+11.9 73.3+6.6 91.4+1.8 82.0+0.5 87.8−0.6 69.4+0.9 77.0+4.4

FSFT w/ CutMix (ours) 63.0+13.9 96.4+3.0 42.9+6.8 90.3+11.3 73.5+6.8 92.1+2.5 83.2+1.7 89.6+1.2 69.8+1.3 77.9+5.3

SWAT (ours) 71.4+22.3 96.5+3.1 69.1+33.0 88.8+4.6 66.3−1.4 93.2+3.6 83.8+0.5 87.2−1.2 71.5+3.0 80.9+8.3

SWAT+ (ours) 73.2+24.1 98.2+4.8 67.3+31.2 88.9+9.9 68.5+0.8 93.9+4.3 84.3+2.8 90.7+2.3 73.2+4.7 82.0+9.4

16

adapter-based
CrossModal-LP [36] 57.7 96.5 38.9 84.5 73.3 90.7 83.3 88.8 68.0 75.7
CLAP [59] 56.9 95.2 42.4 82.2 71.4 90.3 82.3 89.8 70.0 75.6

finetuning-based
FSFT (ours) 66.3+9.4 98.0+2.8 45.6+3.2 94.1+11.9 75.8+4.4 91.5+1.2 82.5+0.2 89.7−0.1 70.2+0.2 79.3+3.7

FSFT w/ CutMix (ours) 67.3+10.4 98.2+3.0 51.2+8.8 94.2+12.0 76.1+4.7 92.3+2.0 84.0+1.7 91.3+1.5 72.1+2.1 80.7+5.1

SWAT (ours) 73.9+17.0 98.2+3.0 72.6+30.2 93.0+10.8 69.0−2.4 93.3+3.0 84.4+2.1 89.0−0.8 72.3+2.3 82.9+7.3

SWAT+ (ours) 75.0+18.1 99.0+3.8 69.8+27.4 93.0+10.8 72.5+1.1 94.1+3.8 85.0+2.7 92.3+2.5 74.2+4.2 83.9+8.3

proper filtering on the retrieved data significantly boosts the
performance of SWAT, allowing it to outperform CLAP [59].
We also find filtering improves SWAT on other datasets,
including Semi-Aves, Flowers, and EuroSAT (cf. Table 10).

Moreover, the improved SWAT still underperforms our
few-shot finetuning (FSFT) on DTD datasets. We hypoth-
esize that the discrepancy is because of DTD’s strict data
collection rules, which include only images that are almost
entirely filled with a texture [11]. In contrast, the retrieved
images often have only part of the region depicting the tex-
ture (Fig. 11 and 12). This suggests future work to explore
better retrieval or filtering methods to find images that are
better aligned with downstream distribution, e.g., by refer-
ring to the data collection rules provided in the data anno-
tation guidelines. We explore different retrieval methods in
Section D below.

D. Analysis of Retrieval and Filtering Methods

Retrieval-augmented learning has been extensively stud-
ied for zero-shot recognition [37, 43, 67]. Previous work [37]
utilizes text-to-text (T2T) or text-to-image (T2I) similar-
ity to retrieve images relevant to each downstream concept.
However, as noted by [43], such similarity-based retrieval
requires significant storage for downloading all the source
images (e.g., >10TB for LAION-400M) and high compute
costs for computing image and text features (>250 T4 GPU

Table 9. Comparison of SWAT’s performance with prior state-
of-the-art FSR method CLAP [59]. SWAT underperforms CLAP
on DTD and Cars datasets due to the significant domain gaps. How-
ever, with proper filtering on retrieved images (by keeping the
top-10 retrieved images for each class that are ranked by prompt-
to-caption or T2T similarity and discarding others), SWAT outper-
forms CLAP. We show results of different retrieval sizes in Table 17.
Subscripts mark the performance difference compared with CLAP.

dataset methods 4-shot 8-shot 16-shot

DTD
CLAP [59] 63.0 66.4 69.9
SWAT 58.3−2.0 62.6−3.8 66.3−3.6

SWAT+filtering 63.5+0.5 69.1+2.7 72.9+3.0

Cars
CLAP [59] 84.9 86.1 87.8
SWAT 81.1−3.8 83.5−2.6 85.4−2.4

SWAT+filtering 83.5−1.4 86.8+0.7 88.6+0.8

hours). In addition, [67] points out the challenge of threshold
selection in similarity-based retrieval: setting it too low in-
cludes irrelevant images, which can negatively impact train-
ing. Moreover, the proper threshold varies for different con-
cepts, making it infeasible to search at scale. Given the above
limitations, in this study, we adopt the string-matching-based
retrieval by [43], detailed in the following two steps.

Step 1: String Matching with Synonyms. We use string
matching to retrieve images whose captions contain any of
the downstream concepts’ synonyms. This circumvents the



Table 10. Comparison of SWAT using different retrieval methods. We conduct experiments on six datasets by first conducting string
matching following [43] to download images whose captions contain any of the concepts’ synonyms, then ranking the images using different
text (few-shot concepts or database captions) and image (database images or few-shot images) features for selecting the images most relevant
to downstream concepts. The top-ranking 500 images for each class are selected for running SWAT with 16 few-shot data. Results show that
despite all methods outperforming random sampling by <1% in average accuracy, no single method is the best for all datasets. We highlight
the best number in bold and underline the second best. We further explore adding text-to-image filtering before text-to-text ranking to
remove noisy images with image-to-FS-concept similarity of less than 0.25. Results show that T2I filtering improves SWAT’s performance
significantly, especially for the DTD dataset (6% improvement). We show examples of T2I filtered images in Fig. 13.

retrieval/ranking method Semi-Aves Flowers Aircraft EuroSAT DTD Cars average

random sampling 62.8 96.0 62.2 92.6 64.9 84.7 77.2
text-to-text: FS-concept & DB-caption 63.4 96.4 62.7 93.0 65.8 85.4 77.8
image-to-image: FS-image & DB-image 63.0 97.1 62.8 92.7 64.9 84.9 77.6
image-to-text: FS-image & DB-caption 63.2 96.8 62.8 93.4 66.7 86.9 78.3
image-to-text: FS-concept & DB-image 62.9 96.8 63.3 93.4 65.7 83.7 77.6

text-to-image filtering (0.25) + text-to-text 63.8 97.5 62.6 93.7 71.6 85.8 79.2

large storage cost, as now we only need to download the text
(60GB for LAION texts) for string matching and then the
images with matching captions (50GB for all nine datasets).
Additionally, [43] shows that using concept synonyms helps
retrieve diverse images which benefits retrieval-augmented
learning.

Step 2: Selection by Ranking. To select images that
are most relevant to downstream concepts, we rank the re-
trieved images based on prompt-to-caption (T2T) similarities
and select the top-ranking 500 images for each downstream
concept. We compare different ranking methods using text
(image captions or downstream concepts) and image (pre-
training images or few-shot images) features in Table 10.
The results show that, despite all ranking methods outper-
forming the random sampling, no single ranking method is
the best across all datasets. This suggests future work to
design retrieval methods customized to each downstream
task.

T2I Filtering Improves SWAT Performance. To ex-
plore better retrieval methods, we follow the practice in the
curation of the LAION dataset to apply text-to-image (T2I)
filtering, excluding noisy retrieved images with T2I (few-
shot concepts and retrieved images) similarities below 0.25.
Despite that adding T2I filtering increases the imbalance
of retrieved data, it notably improves SWAT’s performance
(cf. Table 10), especially on the DTD dataset (>6%). We
show examples of T2I-filtered noisy images in Fig. 13. This
suggests future retrieval methods to explore better filter-
ing techniques. By default, our SWAT does not apply T2I
filtering as post-processing, because determining a proper
threshold for each class requires a large validation set which
is not allowed in our realistic FSR setup.

E. Analysis of Data Augmentation Methods
We show examples of various mixed sample data augmen-

tation (MSDA) methods in Fig. 6 and compare their perfor-

Table 11. Comparison of using different Mixed Sample
Data Augmentation (MSDA) methods in SWAT. Compared
with no mixing, all mixing methods increase accuracy by 1-
2%. MixUp [77] slightly underperforms other CutMix variants,
likely because it creates unnatural artifacts that could confuse the
model [76]. We also find that randomly applying CutMix regard-
less of few-shot and retrieved images performs better than strictly
cutting few-shot patches and pasting them into retrieved images
(CutMix-strict), likely because doing so limits the diversity of data
augmentation. By default, SWAT uses CutMix [76], which achieves
the best performance and low computation overhead among all the
compared MSDA methods. Bold and underlined numbers mark the
best and second best numeric metrics; superscripts denote improve-
ments over no mixing. See visual examples of different MSDA
methods in Fig. 6.

MSDA
method

compute
overhead

mean accuracy of five datasets

4-shot 8-shot 16-shot

No mixing None 68.3 71.9 75.6
MixUp [77] Low 69.1+0.8 73.0+1.1 76.6+1.0

SaliencyMix [64] High 70.1+1.8 74.4+2.5 77.7+2.1

CMO [45] Med 69.9+1.6 74.1+2.2 77.1+1.5

ResizeMix [47] Med 69.6+1.3 74.1+2.2 77.2+1.6

CutMix-strict Med 70.1+1.8 73.8+1.9 77.6+2.0

CutMix [76] Low 70.5+2.2 74.2+2.3 77.8+2.2

mance using SWAT across five datasets (Semi-Aves, Flowers,
Aircraft, EuroSAT and DTD) in Table 11. Results show that
CutMix performs the best with minimal computation over-
head, while SaliencyMix [64] performs similarly but incurs
significant overhead due to the extraction of saliency maps.

Impact of Mixing Ratio. We further explore the im-
pact of the mixing ratio between retrieved and few-shot data
within a batch when applying CutMix augmentation. Results
in Fig. 7 shows that SWAT achieves the best performance
when applying a “natural ratio” by combining retrieved data
and few-shot annotated data without sophisticated resam-
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Figure 6. Examples of different mixed sample data augmentation (MSDA) methods. We show two examples where the first row shows
mixing the retrieved and few-shot images from the same class in Semi-Aves dataset [61], and the second row shows mixing images from
different classes in the FGVC-Aircraft dataset [39]. These MSDA methods encourage the model to learn from small discriminative parts of
the object or details in the background (e.g. part of a bird or airplane), thereby improving the performance. Compared to CutMix [76] and its
variants (SaliencyMix [64], ResizeMix [47]), MixUp [77] augments data by simply interpolating two images, which may create unnatural
artifacts that could confuse the model [76].
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Figure 7. Comparison of final accuracy with varying few-shot
ratio in a batch. Our SWAT adopts a “natural ratio” by combining
retrieved data and few-shot annotated data without sophisticated
resampling methods. The natural ratio is 3%, meaning 3% data in
each batch is from the few-shot data. Results show that the “natural
ratio” (red dashed line) performs better than either increasing the ra-
tio (which reduces data diversity) or decreasing it (which increases
domain gap).

pling methods. This encourages future work to explore
better mixed sample data augmentation methods.

F. Validating the Design of SWAT

Ablation of Stage-2 Training Strategy. To validate the
design of stage-2 classifier retraining in SWAT, we compare
the performance of different stage-2 training strategies in
Table 12. Results show that retraining only the classifier
achieves significantly larger accuracy improvement on rare
classes than retraining only the visual encoder, validating
its effectiveness in mitigating imbalanced distribution. Fur-
thermore, we find that retraining both the visual encoder

Table 12. Comparison of ImageNet accuracy and training time
cost of different stage-2 training strategies. We experiment by
finetuning the stage-1 trained model on 16-shot data from Ima-
geNet following different training strategies. Results show that
finetuning only the classifier (as done in SWAT) improves the rare
class accuracy significantly more than finetuning the visual encoder
only. In addition, the training time cost of retraining the classifier is
much less than finetuning the visual encoder. Moreover, finetuning
both the visual encoder and classifier achieves further improvement
over SWAT, likely due to the insufficient representation learning
in stage 1 with only 50 training epochs. We denote this scenario
as SWAT+ and report its performance across all datasets in Fig. 5,
Table 7 and Table 8.

FT encoder FT classifier Avg common rare time

acc after stage-1 67.1 68.3 56.1

✓ 67.6+0.5 68.3+0.0 61.2+5.1 0.5 mins
✓ 67.4+0.3 68.5+0.2 57.3+1.2 15 mins
✓ ✓ 69.3+2.2 70.1+1.8 62.0+5.9 15 mins

and classifier improves further over SWAT by 1∼2%. We
hypothesize that this is due to the insufficient representation
learning in stage 1 with only 50 training epochs (recall that
we follow realistic evaluation protocol that do not use vali-
dation set to tune hyperparameters). A supporting evidence
is found in Fig. 8 where we show that longer training in
stage 1 generally yields better final accuracy. We denote
this strategy as SWAT+ and report its performance across
all datasets in Fig. 5, Table 7 and Table 8. Considering the
comparable performance and much less training time cost,
we adopt classifier retraining for stage 2 in our SWAT.

Comparison with SOTA Finetuning Methods. Table 13
shows that our SWAT outperforms recent probing-based



Table 13. Comparison of different finetuning methods. We compare SWAT with state-of-the-art probing-based and finetuning-based
methods using the same training data (a mix of retrieved and few-shot data). We experiment with the T2I-filtered retrieved data for each
dataset (cf. Table 10). We use the same set of hyperparameters in Section B for all methods except using a larger batch size of 256 for
FLYP following [17]. Results show that finetuning-based methods largely outperform probing-based methods, indicating the necessity of
finetuning the visual encoder to learn better representation. In addition, ensembling the finetuned model with the zero-shot model (WiSE-FT
with α = 0.5 [69]) leads to much worse accuracy than standard finetuning, likely because the zero-shot OpenCLIP model struggles to
recognize these fine-grained concepts [52]. Finally, SWAT outperforms other finetuning methods, validating its effectiveness in mitigating
domain gaps and imbalanced distribution issues in retrieved data. We highlight the best number in bold and underline the second best.

method Semi-Aves Flowers Aircraft EuroSAT DTD mean accuracy

(shots) 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16

linear probing [49] ICML’24 49.8 52.4 54.4 86.9 89.4 92.8 34.6 35.8 38.2 68.0 78.2 82.4 61.7 65.5 68.9 60.2 64.3 67.3
CMLP [36] CVPR’23 49.2 51.9 53.6 87.0 89.3 92.9 34.1 35.4 37.8 70.1 79.4 83.5 61.3 64.8 68.6 60.3 64.2 67.3
REAL-Linear [43] CVPR’24 51.0 52.5 54.3 85.0 86.4 88.7 31.2 31.8 33.8 66.5 73.4 76.2 62.2 64.7 67.4 59.2 61.8 64.1

standard FT [49] ICML’24 55.2 57.6 60.4 89.4 92.8 95.5 48.9 51.2 53.0 83.3 88.3 92.8 61.5 65.6 70.3 67.7 71.1 74.4
WiSE-FT [69] CVPR’22 51.7 53.2 56.1 82.1 84.6 87.0 32.2 33.2 34.0 77.4 85.2 87.4 64.1 66.7 69.4 61.5 64.6 66.8
FLYP [17] CVPR’23 56.0 57.7 59.6 88.1 91.1 94.4 47.9 49.7 51.2 75.4 83.3 90.6 63.1 67.4 70.3 66.1 69.2 72.6
SWAT (ours) 58.6 61.3 63.8 91.0 94.7 97.5 55.5 58.1 62.6 84.6 89.2 93.7 63.0 67.6 71.6 70.5 74.2 77.8
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Figure 8. Comparison of final accuracy with increasing stage-1
training epochs. Results show that increasing stage-1 training
epochs generally increases final accuracy slightly, without over-
fitting issues. This is likely due to the improved representation
learning. We set stage-1 training epochs to 50 for all datasets, fol-
lowing the realistic FSR setup that does not tune hyperparameters
using a large validation set.

or finetuning-based methods using the same retrieved and
few-shot data. SWAT also outperforms recent ensembling-
based [69] and contrastive finetuning [17] methods, high-
lighting the effectiveness of our proposed stage-wise training
in mitigating domain gap and imbalanced distribution issues.

G. Further Analyses on SWAT

Impact of Stage-1 Training Epochs. We compare the
final accuracy with a varying number of epochs for stage-1
end-to-end finetuning in Fig. 8. Results show that longer
training generally yields better performance due to improved
representation learning. Please note that our realistic FSR
setup does not allow using a validation set to tune training
epochs. Our paper sets the number of training epochs to 50
for all datasets (cf. Section B).

Table 14. Comparison of classifier initialization methods in
SWAT. We compare the final test accuracy by initializing the clas-
sifier before stage-1 end-to-end finetuning in different ways. Initial-
izing classifier weights with text embedding features leads to better
performance than random initialization. [33] explains that using
randomly initialized classifier weights to finetune the model can
distort the features of pretrained model, leading to worse finetuning
performance. Throughout this work, we use prompts in [43] to ini-
tialize classifier weights in SWAT. Subscripts mark the performance
improvement compared with random initialization.

classifier
initialization

mean accuracy of nine datasets

4-shot 8-shot 16-shot

random 72.7 75.1 77.5
text embedding [43] 73.6+0.9 76.1+1.0 78.2+0.7

Classifier Initialization. We compare different classifier
initialization methods for SWAT (Table 14). Results show
that initializing with text embedding yields better perfor-
mance than random initialization.

Retraining Classifier does not Overfit. In Fig. 9, we
show the final test accuracy after retraining the classifier
across varying epoch numbers. For all datasets, accuracy
remains stable with increasing epochs. The small standard
deviations across three runs with different random seeds
confirm that stage-2 classifier retraining with few-shot data
does not suffer from overfitting.

More Detailed Experimental Results. In addition. we
show the detailed performance of classifier retraining for
each dataset in Table 15. The rare classes of the Aircraft
dataset show significant performance gains (>10%) after
classifier retraining, demonstrating the efficacy of classifier
retraining with few-shot data in mitigating domain gaps and
imbalanced distribution. In addition, we include the detailed



Figure 9. Retraining the classifier on the few-shot data does not suffer from overfitting. We show the final test accuracies by retraining
the classifier on the few-shot data for different epoch numbers. For each dataset, we perform three runs of training with different random
seeds. Results show that testing accuracy remains stable with more epochs and shows small standard deviations, indicating classifier
retraining does not suffer from overfitting.

Figure 10. Retrieved data follows imbalanced distribution for
all nine datasets. The retrieved data for ImageNet, Food, DTD,
and Pets datasets are less imbalanced than other datasets, likely
because the concepts from these datasets naturally appear more
frequently on the Internet [43].

ablation of SWAT components on each dataset in Table 16.
Results show that applying CutMix [76] and classifier re-
training effectively mitigate the domain gap and imbalanced
distribution problem, verifying the design of SWAT.

H. Analysis of Retrieved Data

Imbalances of Retrieved Data. We show the imbalanced
distribution of retrieved data for all nine datasets in Fig. 10.
We report the total number of retrieved images per dataset
with increasing retrieval size (images per class) in Table 18.
With increasing retrieval size, the total number of retrieved
images increases less significantly due to the limited pre-
sentation of many downstream concepts in the pretraining
datasets (e.g. LAION [55, 56]). To address this issue, we
suggest future work to retrieve relevant images from diverse
data sources, e.g. other datasets or the Internet [34]. Fig. 11
shows more examples of retrieved images for each dataset.

Impact of Retrieval Sizes. Additionally, we compare
SWAT’s performance on different retrieval sizes in Table 17.
Results show that SWAT saturates at 500 images per class
for 4-shot and 8-shot cases and at 300 for 16-shot. Notably,
for Flowers, EuroSAT, DTD, and Cars, retrieving only 10 im-
ages per class yields the best results, likely due to improved
data balance and the exclusion of noisy images (Fig. 13). Fu-
ture work can study how to enhance the balance and quality
of retrieved data.



Table 15. Detailed comparison of the accuracy of common and rare classes after stage-1 and stage-2 training. We define the rare
classes as the 10% least frequent classes in retrieved data and the rest as the common classes. Results show that stage-2 classifier retraining
clearly improves recognition accuracy on both common and rare classes in all methods, including finetuning on few-shot data only, on
retrieved data only, and on mixed data with or without CutMix data augmentation. Importantly, the improvement on rare classes is more
significant than that on common classes, confirming that classifier retraining mitigates the issue of imbalanced distribution in the retrieved
data. We report the accuracy for each dataset using 16-shot examples.

data used in
stage-1: finetuning

stage classes Semi-Aves Flowers Aircraft EuroSAT DTD Pets Food Cars ImageNet average

few-shot only
(balanced)

stage-1
finetuning

common 56.1 97.6 43.2 94.9 73.5 90.6 78.8 88.6 68.0 76.8
rare 63.5 100.0 34.6 87.1 76.7 84.9 74.8 84.4 56.8 73.6

average 56.9 97.4 42.4 94.1 73.9 90.0 78.4 88.0 66.9 76.4

stage-2
classifier retraining

common 56.0 97.5 47.3 95.0 72.9 90.0 78.9 88.5 67.1 77.0
rare 63.8 100.0 46.4 87.2 76.7 86.9 74.5 83.3 57.3 75.1

average 56.8 97.4 47.2 94.3 73.3 89.7 78.4 87.9 66.1 76.8

retrieved only
(imbalanced)

stage-1
finetuning

common 56.2 84.4 52.5 30.4 52.4 90.8 76.0 78.1 62.5 64.8
rare 15.0 54.4 10.2 0.0 61.1 85.5 73.3 51.8 46.4 44.2

average 52.1 81.6 48.3 27.9 53.3 90.3 75.7 75.3 60.9 62.8

stage-2
classifier retraining

common 60.0 90.2 57.5 32.2 54.6 90.9 76.8 82.9 64.7 67.8
rare 36.9 77.8 33.7 0.0 62.8 86.6 74.2 66.8 58.8 55.3

average 57.7 88.6 55.1 29.4 55.4 90.5 76.6 81.2 64.1 66.5

retrieved + few-shot

stage-1
finetuning

common 61.4 94.6 57.4 93.4 62.3 91.4 77.9 81.8 64.8 76.1
rare 49.4 96.8 26.2 87.5 69.4 87.4 75.9 68.8 52.7 68.2

average 60.2 94.7 54.3 92.8 63.1 91.0 77.7 80.3 63.6 75.3

stage-2
classifier retraining

common 61.6 95.4 60.6 93.4 62.8 91.3 78.0 84.0 65.7 77.0
rare 52.2 98.0 44.3 87.5 68.9 87.1 76.0 73.1 57.6 71.6

average 60.6 95.4 59.0 92.8 63.5 91.0 77.8 82.8 64.9 76.4

retrieved + few-shot
w/ CutMix

stage-1
finetuning

common 63.7 96.4 61.3 93.4 64.8 91.5 78.3 83.9 68.3 78.0
rare 55.8 100.0 34.7 83.9 72.2 89.2 77.4 78.0 56.1 71.9

average 62.9 96.3 58.7 92.5 65.6 91.3 78.2 83.2 67.1 77.3

stage-2
classifier retraining

common 64.0 96.4 63.7 93.7 65.6 91.9 78.4 86.1 68.3 78.7
rare 54.9 100.0 50.9 82.0 72.2 88.6 77.5 79.9 61.2 74.1

average 63.1 96.4 62.4 92.6 66.3 91.6 78.3 85.4 67.6 78.2

I. Code and Instructions
We release open-source Python code at https://

github.com/tian1327/SWAT.
Requirements. Running our code requires some com-

mon packages. We installed Python and most packages
through Anaconda. A few other packages might not
be installed automatically, such as clip, open_clip_torch,
img2dataset, torchvision, and PyTorch, which are required
to run our code. We provide detailed instructions for build-
ing the environment in file ENV.md. Below are the versions
of Python and PyTorch used in our work.
• Python version: 3.8.19
• PyTorch version: 2.0.1
We suggest assigning >50GB storage space and >5GB GPU
RAM to reproduce our experiments.

License. We release open-source code under the MIT
License to foster future research in this field.

Instructions. We provided detailed step-by-step instruc-
tions for running our code in the following markdown files.
• ENV.md

Create a conda environment and install the required pack-
ages.

• DATASETS.md
We provide detailed steps for setting up the benchmark-
ing datasets and sampling few-shot data from the official
training sets with three random seeds.

• RETRIEVAL.md
We provide step-by-step instructions on how to use string-
matching [43] to retrieve relevant images from Open-
CLIP’s pretraining dataset LAION-400M [55, 56]. Exam-
ples of different ranking and filtering methods for selecting
the images that are most relevant to downstream concepts
are also provided.

• README.md
We provide instructions on how to run the provided code
for few-shot finetuning (FSFT) and SWAT. In addition, we
provide guidelines on how to reproduce the baseline meth-
ods Cross-Modal Linear Probing [36] and CLAP [59].

https://github.com/tian1327/SWAT
https://github.com/tian1327/SWAT


Table 16. Ablation study on important components in our SWAT. We show the detailed performance improvements by each component
for each dataset in our SWAT. Finetuning on simply combined retrieved and few-shot data underperforms finetuning solely on few-shot data
(8-shot and 16-shot, with or without CutMix), due to the large domain gap and imbalanced distribution in retrieved data. However, further
applying CutMix and classifier retraining improves the test accuracy significantly, confirming their effectiveness in mitigating the domain
gap and imbalanced distributions. We also compare the performance of few-shot finetuning with and without CutMix data augmentation.
The results indicate more few-shot data yields more improvements, likely due to stronger data augmentation.

shots method
finetune
model

retrieve
data

apply
CutMix

retrain
classifier

Semi-Aves Flowers Aircraft EuroSAT DTD Pets Food Cars ImageNet average

4

CLAP [59] 34.0 90.1 28.0 74.7 63.0 87.0 76.7 84.9 64.0 66.9
FTFS (ours) ✓ 47.5 92.5 27.9 81.6 66.6 88.7 75.8 81.5 62.3 69.4
FTFS (ours) ✓ ✓ 48.0 92.2 28.8 81.8 66.7 89.0 76.1 82.5 62.4 69.7

✓ ✓ 54.7 89.7 50.1 80.2 56.3 90.7 76.4 76.9 61.8 70.8
✓ ✓ ✓ 57.9 90.2 53.8 83.2 58.7 91.0 77.2 79.8 65.2 73.0

SWAT (ours) ✓ ✓ ✓ ✓ 58.5 90.6 55.7 83.2 58.3 91.3 77.3 81.1 65.8 73.5

8

CLAP [59] 42.9 92.9 33.6 77.4 66.4 87.8 77.5 86.1 65.6 70.0
FTFS (ours) ✓ 51.2 95.4 33.1 90.3 71.0 89.3 76.0 83.5 64.4 72.7
FTFS (ours) ✓ ✓ 52.3 95.2 35.4 89.4 70.6 89.6 77.0 85.3 64.8 73.3

✓ ✓ 57.3 91.9 52.4 87.0 59.2 91.1 76.8 78.9 62.5 73.0
✓ ✓ ✓ 60.6 93.7 55.7 89.1 61.8 90.8 77.6 81.3 65.8 75.2

SWAT (ours) ✓ ✓ ✓ ✓ 60.8 94.1 59.1 89.2 62.6 90.8 77.5 83.5 66.6 76.0

16

CLAP [59] 49.2 94.8 39.1 81.7 69.9 88.4 78.5 87.8 67.1 72.9
FTFS (ours) ✓ 55.3 97.0 37.0 94.0 73.3 89.5 77.1 85.7 66.7 75.1
FTFS (ours) ✓ ✓ 56.5 97.1 42.7 94.3 73.4 89.6 78.2 87.8 66.9 76.3

✓ ✓ 60.2 94.7 54.3 92.8 63.1 91.0 77.7 80.3 63.6 75.3
✓ ✓ ✓ 62.9 96.3 58.7 92.5 65.6 91.3 78.2 83.2 67.1 77.3

SWAT (ours) ✓ ✓ ✓ ✓ 63.1 96.4 62.4 92.6 66.3 91.6 78.3 85.4 67.6 78.2

Table 17. Impact of retrieval size (number of images per class) on the performance of SWAT. We show the performance of SWAT on
each dataset using different numbers of retrieved images. We highlight the best number in bold and underline the second best. Importantly,
we find that retrieving 10 images per class works best for Flowers, EuroSAT, DTD, and Cars datasets. This is probably because LAION-400M
contains limited images that match these downstream concepts and simply retrieving more will include more noisy images and more
imbalanced distributions, which hurt the training performance. We list the performance of the previous state-of-the-art few-shot recognition
method CLAP [59] in the table for comparison with our SWAT.

shots Retrieval size Semi-Aves Flowers Aircraft EuroSAT DTD Pets Food Cars ImageNet average

4

CLAP [59] 34.0 90.1 28.0 74.7 63.0 87.0 76.7 84.9 64.0 66.9
10 52.4 91.8 37.0 84.7 63.5 89.3 75.9 83.5 64.8 71.4

100 57.4 90.7 47.0 82.1 62.1 89.9 76.6 83.5 66.1 72.8
300 58.7 91.4 54.1 82.2 59.3 91.1 77.1 81.7 65.9 73.5
500 58.5 90.6 55.7 83.4 58.3 91.3 77.3 81.1 65.8 73.6

1,000 58.3 89.6 58.1 84.1 57.7 91.4 76.2 81.1 65.2 73.5

8

CLAP [59] 42.9 92.9 33.6 77.4 66.4 87.8 77.5 86.1 65.6 70.0
10 55.7 95.2 42.2 90.0 69.1 89.4 76.9 86.8 65.8 74.6

100 59.2 94.6 49.9 88.6 65.2 90.2 77.2 85.3 67.0 75.2
300 60.6 94.3 56.5 89.3 63.1 90.9 77.6 83.9 67.3 75.9
500 61.3 94.1 59.1 88.7 62.6 91.5 77.6 83.5 66.6 76.1

1,000 60.9 92.9 60.6 88.9 59.8 91.4 76.7 83.6 66.2 75.7

16

CLAP [59] 49.2 94.8 39.1 81.7 69.9 88.4 78.5 87.8 67.1 72.9
10 58.4 97.0 48.6 94.0 72.9 89.6 78.5 88.6 66.9 77.2

100 61.8 96.8 54.5 93.4 69.4 90.2 78.6 87.1 67.9 77.7
300 63.2 96.8 60.8 93.1 67.0 91.3 78.6 86.0 67.8 78.3
500 63.1 96.4 62.4 92.9 66.3 91.6 78.3 85.4 67.6 78.2

1,000 63.6 96.4 64.2 93.0 63.0 91.8 77.2 85.6 67.2 78.0
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Figure 11. Comparison of downstream few-shot data with retrieved pretraining images (from LAION-400M [55]) for nine fine-
grained datasets. We present more examples of retrieved images for randomly selected classes from each dataset. Compared to downstream
few-shot images, the retrieved data exhibits diverse styles, backgrounds, resolutions, and even semantics, demonstrating significant domain
gaps.
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Figure 12. Visual comparison between downstream DTD images and the retrieved images (from LAION-400M [55]) for various DTD
concepts. Clearly, a large domain gap exists between the two data resources regarding styles, backgrounds, semantics, etc. In addition, the
retrieved images only have a partial region depicting the texture, contrasting to the few-shot images which are “almost entirely filled with a
texture” according to DTD’s strict data collection rules [11]. We suggest future work to explore better retrieval methods that are closely
aligned with downstream data distribution, e.g., by referring to the data collection/annotation rules provided in the data annotation guidelines
of a downstream task.

Table 18. Total number of retrieved images for each dataset under different retrieval sizes. With a larger retrieval size (number of
retrieved images per class), we observe a diminished increase in the total number of retrieved images. This is because many downstream
concepts have limited presence in the pretraining set (LAION-400M [55, 56]). See the imbalanced distribution of each dataset in Fig. 10.

images / class Semi-Aves Flowers Aircraft EuroSAT DTD Pets Food Cars ImageNet

10 1,940 1,002 1,000 71 470 370 1,010 1,939 9,989
100 15,687 9,376 9,120 530 4,700 3,700 10,100 18,494 98,753
300 34,685 25,140 21,774 1,330 14,100 11,100 30,241 51,251 288,532
500 47,006 39,465 30,429 1,871 23,364 18,460 49,914 80,648 471,876

1,000 67,418 71,332 44,519 2,387 45,978 36,105 96,697 147,568 901,902



Dataset Few-shot data Noisy retrieved images (w/ captions) filtered by T2I thresholding (< 0.25)
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Figure 13. Examples of noisy retrieved images (from LAION-400M [55]) filtered by T2I thresholding. We show that string-matching-
based retrieval (by searching image captions that contain any concept synonyms) can retrieve noisy images that could compromise the
learning of downstream concepts, e.g., the bird eggs or the distribution map of bird species (first row). Using text-to-image (T2I) filtering
helps remove such noisy images and improve the performance of SWAT (Table 10). We choose a T2I threshold of 0.25 for our experiment,
similar to that used in the curation of LAION [55, 56]. We highlight the T2I cosine similarity and concept synonyms for each image.


	Introduction
	Related Work
	Problem Formulation and Methods
	Finetuning on Few-Shot Data
	Finetuning on Retrieved Data
	Stage-Wise Retrieval-Augmented Finetuning

	Experiments
	Experimental Setup
	Benchmarking Results and Ablation Studies

	Discussions
	Conclusions
	Summary of Datasets
	Hyperparameter Setting
	Detailed Benchmarking Results
	Analysis of Retrieval and Filtering Methods
	Analysis of Data Augmentation Methods
	Validating the Design of SWAT
	Further Analyses on SWAT
	Analysis of Retrieved Data
	Code and Instructions



