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Supplementary Material

A. Theoretical Analysis
A.1. Differentiable Gaussian Selection
To substantiate the claims made in Sec. 3.2 regarding the
ability of the proposed GsNet and Gumbel-Softmax [6]
mechanisms to enable Adaptive Gaussian Selection in a dif-
ferentiable manner, the following derivation is provided. As
shown in Eq. 1 and Eq. 2, with the logits z ∈ RN×C , where
N represent the number of Gaussians and C denotes to the
number of classes (set to 2), a Gumbel noise sampling is
conducted, whereby noise is integrated and the temperature
parameter is appropriately scaled by τ .

gi,c = − log (− log (Ui,c)) , Ui,c ∼ Uniform(0, 1). (1)

z̃i,c =
zi,c + gi,c

τ
. (2)

Then a softmax function is used for calculating soft output.

zsoft,i,c =
exp (z̃i,c)∑C

k=1 exp (z̃i,k)
(3)

Alternatively, discrete hard outputs may be derived from the
soft outputs for utilization in forward propagation.

zhard,i,c =

{
1 if c = argmaxk zsoft,i,k

0 otherwise
(4)

The Straight-Through Estimator is employed to rec-
oncile the discrete nature of hard outputs with the dif-
ferentiable characteristics of soft outputs within the hard
Gumbel-Softmax framework:

Bi =zhard,i − zsoft,i + zsoft,i

=zhard,i + (zsoft,i − zsoft,i)

=zhard,i + stop gradient(zsoft,i)

(5)

where stop gradient(zsoft,i) signifies that during backprop-
agation, the gradient associated with zsoft,i is disregarded,
thereby exclusively preserving the value of zhard,i.

For an entire batch of size N , let the input matrix z ∈
RN×2 and the output matrix B ∈ RN×2 be defined. While
the selected mask M̂ = zoutput[:, −1]. The gradient ma-
trix ∂M̂

∂z ∈ RN×2 is delineated as follows:

∂M̂

∂z
=

1

τ


−B1,0B1,1 B1,1 (1−B1,1)
−B2,0B2,1 B2,1 (1−B2,1)

...
...

−BN,0BN,1 BN,1 (1−BN,1)

 (6)

where, the temperature parameter is denoted by τ . The
probabilities of the i-th sample belonging to class 0 and
class 1 are represented by Bi0 and Bi1, respectively. The
ellipsis indicates that this pattern continues similarly for all
N samples. The aforementioned gradient matrix can also
be expressed in a vectorized form as follows:

∂M̂

∂z
=

1

τ

[
−B[:, 0]⊙B[:, 1] B[:, 1]⊙ (1−B[:, 1])

]
,

(7)
where ⊙ signifies element-wise multiplication. From Eq. 7,
we can observe that the gradient of each parameter in GsNet
can be calculated based on the “chain rule”.

A.2. Gradients of Gaussian Attributes
To elucidate the computational procedure, we hereby rede-
fine the notations previously employed in Sec. 3.1. The
current opacity of the specific Gaussian i within the render-
ing process for pixel p is illustrated in Eq. 8.

αi = ôi ·G2(i, p), ôi = oi · M̂ i, (8)

where ôi is the masked opacity for the selected Gaussians
and G2(i, p) denotes the effect coefficient of the 2D projec-
tion of the Gaussian i to the pixel p.

With the given ratio e, the rendering loss of the selected
Gaussian can be calculated as below:

Ls = |Ie
s − IGT |. (9)

Specially, for the i−th Gaussian interacted with pixel p on
rendered Image Ie

s, the gradient of the Gaussian attribute µ
can be calculated as shown in Eq. 10.

∂Ls

∂µi
=
∂Ls

∂ôi
· ∂ôi

∂µi
·G2 +

∂Ls

∂G2
· ∂G2

µi
· ôi

=G2 ·
∂Ls

∂ôi

∂oi · M̂ i

∂µi
+ oiM̂ i ·

∂Ls

∂G2

∂G2

µi

=oiG2 ·
∂Ls

∂ôi

∂M̂ i

∂z

∂z

∂µi
+ oiM̂ i ·

∂Ls

∂G2

∂G2

µi

(10)

Where ∂z
∂µi

is the gradient of GsNet to µi. Other attributes
of Gaussians can also be calculated in the same process,
with the gradient ∂M̂i

∂z is calculated in 7.

B. Implementation Details
B.1. Training Details
In Sec. 3.2, the dimensionality D of the hidden features in
GsNet, employed for adaptive selection, is set to 64. To en-
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Figure 1. Visual results compared with other methods on various elastic ratios:{0.01,0.05,0.10,0.15} on Mip-NeRF360 [1]: {bicycle, room,
counter, stump, bonsai}.

hance computational efficiency, the implementation of the
Spatial-Ratio Neural Field proposed in Sec. 3.3 adheres
to the configurations outlined in [4, 9], utilizing six planes
{(x, y), (x, z), (y, z), (x, e), (y, e), (z, e)} to model the 4D
voxel space. The resolutions across the four dimensions
(x, y, z, and e) are configured as {64, 64, 64, 100}. Ad-
ditionally, the hidden feature dimension of the Multi-Head
Predictor for predicting the transformation under the given
ratio is set to 64.

B.2. Inference Details
During elastic inference, in contrast to the training phase
where the opacity of Gaussians is multiplied by the binary
mask values, we directly discard the unselected Gaussians.
Furthermore, we observe that despite enforcing sparsity su-
pervision on the masks predicted by GsNet, the number of
activated entries within the predicted mask does not exactly
achieve the desired ratio. For instance, a target ratio of 0.20

results in approximately selecting 19.5% of all Gaussians.
Therefore, to attain an accurate elastic ratio, during infer-
ence, we employ Pytorch’s F.gumbel softmax function
with its parameter hard=False to output continuous log-
its and select the top ⌊eN⌋ logits out of N .

C. More Experimental Results
In this section, we provide more pre-scene results. Vi-
sual comparisons on four scenes of Mip-NeRF360 [1]
{bonsai, counter, room, stump} under the given ratios
{0.01, 0.05, 0.10, 0.15} are shown in Fig. 1. The break-
down results of quantitative comparisons on each scene of
the tested datasets are from Tab. 1 to Tab. 8.

How useful is the elastic inference in real application
scenarios? In practical applications, the loading and de-
ployment of pre-trained Gaussian models inherently de-
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Figure 2. Potential use of elastic inference in the application scenario of incremental scene loading.

mand a considerable amount of time. Moreover, as shown
in Fig 2, the aggregate loading time escalates propor-
tionally with the number of Gaussian models being de-
ployed. Elastic inference enables the rapid deployment of
lower-precision, coarse-grained models, while simultane-
ously maximizing rendering quality within a given resource
budget. It can further allow for the incremental loading of
higher-precision, detail-rich models. This enhances the user
experience of 3D scene deployment scenarios over time,
like mobile gaming and online VR shopping.



Table 1. Quantitative results of FlexGS across various elastic ratios compared with other methods on Mip-NeRF360:{bicycle} [1]
(LightGS* denotes the LightGaussian without finetuning after pruning).

Method
1% 5% 10% 15%

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LightGS* [3] 14.561 0.3327 0.5782 16.379 0.4445 0.4498 18.235 0.5388 0.3716 20.042 0.6207 0.3163
LightGS [3] 21.896 0.4814 0.5335 23.222 0.5952 0.3989 24.131 0.6769 0.3209 24.714 0.7230 0.2714
C3DGS [8] 21.740 0.4770 0.5350 23.110 0.5780 0.4110 23.910 0.6560 0.3390 24.460 0.7060 0.2930

EAGLES [5] 21.326 0.4549 0.5618 22.970 0.5600 0.4400 23.690 0.6300 0.3900 23.530 0.6300 0.3600
Ours 22.385 0.5350 0.4806 23.988 0.6865 0.3330 24.476 0.7302 0.2769 24.596 0.7408 0.2576

Table 2. Quantitative results of FlexGS across various elastic ratios compared with other methods on Mip-NeRF360:{bonsai} [1]
(LightGS* denotes the LightGaussian without finetuning after pruning).

Method
1% 5% 10% 15%

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LightGS* [3]* 15.231 0.4839 0.5181 19.071 0.6481 0.3567 21.774 0.7607 0.2632 24.025 0.8326 0.2020
LightGS [3] 22.397 0.6844 0.4185 27.359 0.8399 0.2327 29.374 0.9025 0.1580 30.590 0.9289 0.1220
C3DGS [8] 21.810 0.6640 0.4420 25.700 0.8020 0.2660 28.240 0.8810 0.1780 29.560 0.9150 0.1380

EAGLES [5] 20.601 0.6263 0.4921 24.660 0.7700 0.3300 26.420 0.8300 0.2500 27.450 0.8600 0.2200
Ours 24.420 0.7415 0.3511 28.449 0.8775 0.2024 30.605 0.9296 0.1324 31.606 0.9452 0.1063

Table 3. Quantitative results of FlexGS across various elastic ratios compared with other methods on Mip-NeRF360:{counter} [1]
(LightGS* denotes the LightGaussian without finetuning after pruning).

Method
1% 5% 10% 15%

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LightGS* [3] 14.866 0.4669 0.5304 18.713 0.6149 0.3806 21.300 0.7064 0.3025 23.176 0.7671 0.2496
LightGS [3] 22.474 0.6886 0.4167 25.882 0.8085 0.2644 27.481 0.8590 0.2002 28.348 0.8857 0.1652
C3DGS [8] 21.920 0.6640 0.4420 25.820 0.8040 0.2660 27.390 0.8640 0.1920 28.120 0.8890 0.1580

EAGLES [5] 21.750 0.6700 0.4400 23.330 0.7400 0.3600 24.640 0.7900 0.2900 25.420 0.8200 0.2500
Ours 23.367 0.7282 0.3647 26.151 0.8298 0.2402 27.577 0.8807 0.1733 28.264 0.8997 0.1453

Table 4. Quantitative results of FlexGS across various elastic ratios compared with other methods on Mip-NeRF360:{flowers} [1]
(LightGS* denotes the LightGaussian without finetuning after pruning).

Method
1% 5% 10% 15%

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LightGS* [3] 12.883 0.2349 0.6578 15.128 0.3436 0.5264 16.853 0.4242 0.4596 18.211 0.4808 0.4204
LightGS [3] 18.274 0.3487 0.6104 19.837 0.4813 0.4680 20.763 0.5511 0.4090 21.306 0.5857 0.3776
C3DGS [8] 18.100 0.3340 0.6160 19.570 0.4530 0.4790 20.400 0.5200 0.4250 20.920 0.5560 0.3970

EAGLES [5] 17.862 0.3158 0.6461 19.390 0.4300 0.5300 20.110 0.4800 0.4700 20.530 0.5200 0.4400
Ours 18.363 0.3771 0.5656 21.489 0.5828 0.3836 21.691 0.5972 0.3646 21.699 0.5989 0.3581



Table 5. Quantitative results of FlexGS across various elastic ratios compared with other methods on T&T:{train} [7] (LightGS* denotes
the LightGaussian without finetuning after pruning).

Method
1% 5% 10% 15%

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LightGS* 11.907 0.3357 0.5643 15.106 0.5287 0.3958 17.144 0.6497 0.2905 18.711 0.7287 0.2264
LightGS 18.304 0.5845 0.4506 21.201 0.7721 0.2476 22.241 0.8363 0.1682 22.835 0.8655 0.1298
C3DGS 17.657 0.5397 0.4790 20.526 0.7540 0.2159 21.595 0.8217 0.1852 22.274 0.8513 0.1427

EAGLES 16.715 0.4825 0.5370 18.794 0.6452 0.3798 19.633 0.7145 0.3021 20.175 0.7545 0.2583
Ours 19.189 0.6607 0.3726 21.629 0.8042 0.2135 22.475 0.8519 0.155 22.830 0.8645 0.1354

Table 6. Quantitative results of FlexGS across various elastic ratios compared with other methods on T&T:{truck} [7] (LightGS* denotes
the LightGaussian without finetuning after pruning).

Method
0.0100 0.0500 0.1000 0.1500

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LightGS* 11.449 0.4011 0.4998 15.287 0.6407 0.2709 18.501 0.7652 0.1750 21.179 0.8381 0.1261
LightGS 20.641 0.7227 0.3079 24.993 0.8952 0.1057 26.478 0.9284 0.0631 27.130 0.9395 0.0505
C3DGS 20.551 0.7201 0.3087 24.457 0.8877 0.1135 26.028 0.9241 0.0681 26.736 0.9360 0.0532

EAGLES 18.346 0.6084 0.4331 21.753 0.7874 0.2317 23.164 0.8466 0.1624 24.034 0.8773 0.1282
Ours 22.433 0.8061 0.2248 25.374 0.9062 0.0934 26.587 0.9324 0.0579 27.000 0.9393 0.0501

Table 7. Quantitative results of FlexGS across various elastic ratios compared with other methods on Zip-NeRF:{Berlin} [2] (LightGS*
denotes the LightGaussian without finetuning after pruning).

Method
1% 5% 10% 15%

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LightGS* 15.628 0.6578 0.5101 20.121 0.7457 0.4177 22.374 0.7951 0.3629 23.897 0.8278 0.3287
LightGS 20.693 0.7432 0.4554 24.272 0.8194 0.3672 25.782 0.8549 0.3204 26.563 0.8722 0.2958
C3DGS 20.243 0.7351 0.4679 23.055 0.7887 0.4047 24.694 0.8290 0.3491 25.383 0.8479 0.3238

EAGLES 18.984 0.7198 0.4728 21.543 0.7598 0.4422 23.045 0.7927 0.4001 23.987 0.8134 0.3724
Ours 21.560 0.7664 0.4257 24.936 0.8377 0.3407 26.242 0.8669 0.3000 26.770 0.8793 0.2794

Table 8. Quantitative results of FlexGS across various elastic ratios compared with other methods on Zip-NeRF:{London} [2] (LightGS*
denotes the LightGaussian without finetuning after pruning).

Method
1% 5% 10% 15%

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LightGS* 15.829 0.5365 0.5922 19.372 0.6468 0.4942 21.456 0.7029 0.4324 22.798 0.7400 0.3916
LightGS 20.481 0.6535 0.5475 23.474 0.7274 0.4498 24.681 0.7677 0.3935 25.358 0.7914 0.3592
C3DGS 20.162 0.6426 0.5582 22.843 0.7028 0.4833 24.032 0.7428 0.4291 24.644 0.7674 0.3857

EAGLES 18.241 0.6136 0.5655 20.826 0.6638 0.5370 22.248 0.6943 0.4956 23.027 0.7164 0.4643
Ours 21.29 0.6697 0.5234 24.015 0.7458 0.4200 25.086 0.7834 0.3652 25.540 0.8012 0.3383
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