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A. Bray-Curtis Distance
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Figure 1. In the upper plot, its numerator and denominator ex-
hibit near-symmetry, prompting the selection of the Bray-Curtis
distance. In the below plot, the two conditions cannot be both sat-
isfied so the default Euclidean distance will be selected. The AUC
results also validate the accuracy of our distance selection.

In this study, we introduce Bray-Curtis distance, which
is widely utilized in the fields of bioinformatics [1], to ad-
vance Euclidean distance. To our best knowledge, this is the
first usage of Bray-Curtis distance for UOD. So we provide
its empirical analysis for better implementation.
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Based on Eq. 1, the Bray-Curtis distance can be decom-
posed into its numerator nume(z;) = ||x; — mx||[1 and
the denominator deno(z;) = ||z; — (—mx)||1, which show
potential symmetry based on their similar structures, shown
in Fig. 1 (upper plot). We first assume an ideal case (fea-
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ture representation is separable), all outliers are located at
greater /1-norm values from the mean mx compared to any
inlier, i.e.,

max({||z; — mx||1]z; € Xin}) <

2
— mxlli|zs € Xoue) @

min({||z;

Leveraging the symmetry between the numerator and de-
nominator, we have:

max({||z; — (=mx)|1]z; € Xin}) >
) 3
min({[|z; — (—=mx)|1]z; € Xout})
Thus, we have:
max({||zi — mx||1]7; € Xin}) <
max({||z; — (=mx)|[1|z; € Xin}) @
min({||z; — mx||1|z: € Xout})
min({[|z; — (=mx)||1]z; € Xout}’

e., the separability between inliers and outliers will be
enhanced, if the symmetry property is satisfied. To
empirically define the symmetry, {nume(z;)}? , and
{deno(x;)}?_, should satisfy two following conditions:
Condition 1: Similar distributions.

To measure the similarity, we utilize K-L divergence [2],
constraining its value as less than 0.05.
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Condition 2: Independent with each other.
In statistics, the “3-sigma” rule [3] suggests data points with
more than three standard deviations o from the mean g can
be considered as out-of-distribution instances. So we test
whether:

71 < To, (6)
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Figure 2. Average AUC results for different distance metrics.

where 71 = p({nume(z;)}? ;) + 3 - o({nume(z;)}" )
and 2 = p({deno(z;)};) — 3 - o({deno(z;)},). If
condition 1 and condition 2 are both satisfied, w = 1, Bray-
Curtis distance (Eq. 6 in the main paper) will be selected;
otherwise, w = 0, i.e., Euclidean distance (Eq. 5 in the main
paper) will be selected. Fig. 2 demonstrates that our fi,,,
always selects the optimal distance metrics across different
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Figure 3. Contamination factor estimation on different datasets.

B. Comparison with LVAD at low ~

When ~ is low (0.005, 0.01), FlexUOD is more stable on
various datasets as well as higher efficiency (both running
time and memory cost) compared with LVAD, as shown in
Tab. 1.

Table 1. Multiple comparison with LVAD at low-~ scenarios.

Method Different Dataset (Avg (ResNet-50, CLIP)) Efficiency (CPU)

STL InternetCIFAR-10| Average Timing (#5000)Memory Cost
LVAD (0978 0.974 0.940 0.964 8.057 (sec.) | 0.254 (MB)
FlexUOD|0.974 0.982  0.960 0.972 0.118 (sec.) | 0.204 (MB)

C. Contamination Factor Estimation

Fig. 3 presents more examples for contamination factor es-
timation. First, the introduced f4;4, always performs well
on high-v scenarios while its performance significantly de-
grades in low-v settings. Besides, the linearly-correlated
property of ranking-index similar maintains on different tar-
get datasets.
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