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Supplementary Material

In this supplementary material, we first provide solid
formula proof of the effectiveness of Lo-Hi sensitive quan-
tization. Then we introduce the statistical information on
frequency of interest (FOI) and how they contribute to our
basis attention block (BAB). Finally, we present more com-
prehensive experimental results, including rate-distortion
curves of evaluated compression algorithms, qualitative re-
sults of compensation frameworks, rate-mAP curves and
visual results of object detection, and complexity analysis of
BAB.

1. Formula Proof of Effectiveness of Lo-Hi Sen-
sitive Quantization

In general, we consider one specific frequency component
(FC) of the DCT transform. Hence its intervals quantified
by default step q and standard deviation of this FC σ are
denoted as t̃ and t̂, approximately following N(0, ς̃) and
N(0, ς̂) [3], respectively. We use Shannon entropy [2] to
measure the entropy reduction of coefficients benefitted from
our Lo-Hi sensitive quantization in comparison with default
quantization. Specifically, the entropy of intervals obtained
from default quantization can be given by:
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where N is the number of all possible values of the quanti-
zation intervals within the overall image. Correspondingly,
the entropy of intervals derived from Lo-Hi sensitive quanti-
zation is denoted as:
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and M is the number of all possible values of intervals. We
measure the entropy reduction as follows:
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To reduce the Equation 4, we first simplify Equation 2:
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Note that the summation of the first term in Equation 8 sums
the probability of {t̃}Nn :
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Therefore, Equation 8 can be further simplified as:
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Obviously, the summation of the second term in Equation 13
calculates the variance of {t̃}Nn :
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with which Equation 13 is further reduced as:
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Similarly, Equation 3 can be simplified into:
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With Equation 18 and Equation 19, the entropty reduction
denoted by Equation 4 can be reduced as:
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Equation 22 gives the ideal reduction amount of entropy
induced by our Lo-Hi sensitive quantization. The first term
approximately equals 2.05. The standard deviations ς̃ and ς̂
in the second term are related to standard deviations of scaled
coefficients before rounding given by σ̃ = σ

q and σ̃ = σ
σ = 1,

wherein σ is the standard deviation of DCT coefficients of
the specific FC. Note that the replacement of quantization
step happens only in low frequency components according
to our statistical results. Moreover, The numerical difference
between q and σ is often large in low frequency components,
leading to the large amount of entropy reduction and further
higher compression ratio.

By the numbers, we analyze the possible maximum range
of entropy reduction. Specifically, we follow the JPEG com-
pression process at QF = 60 and take a random image from
the DIV2K [1] dataset as an instance. We obtain two sets of
integer values from default quantization and statistic-based
quantization, respectively. The minimum amount of entropy
reduction is obtained as 1

2 log2(2πe) ≈ 2.05 where Q = dQ.
And the maximum amount of entropy reduction is obtained
at the first AC component where Q = δ. The ς̃ and ς̂ in
Equation.4 can be estimated from the above integer values,
thus the amount of entropy reduction is around 4.65. There-
fore, the range of ideal entropy reduction benefitted from our
Lo-Hi sensitive quantization normalization is [2.05, 4.65].

2. Statistical Information of Frequency of Inter-
est (FOIs)

In this section, we describe how we collect statistical
information of FOIs applied to the basis attention block
(BAB).

In Lo-Hi sensitive quantization process, we replace the
default quantization step dQ with the standard deviation δ
for each frequency component following:

Q =

{
δ , δ > dQ (23a)
dQ , otherwise, (23b)

which results in more information loss on low-frequency
bands and a higher compression ratio. In the proposed com-
pensation framework, we make the best of the quantization
steps and delicately design the basis attention block account-
ing for recovering frequency information.

We conduct the JPEG, HEVC, and VVC compression on
the testing dataset consisting of 250 images. The standard
deviation of each frequency component is calculated and
compared with the default quantization step (QS) of this FC.
Across the datasets, the times when the replacement of the
quantization step of each FC happens are counted, as shown
in Fig. 1(a). Furthermore, the residual of the quantization
step after the replacement is summed and normalized in
a range of [0, 1], as shown in Fig. 1(b). The residual is
calculated as follows:

Ri = Norm(
∑

dataset

(δi − dQi)), i ∈ FOIs. (24)

Note that the blank FCs in Fig. 1 indicate that no replace-
ment of the quantization steps ever happens.

DCT basis function in BAB. It can be easily seen from
Fig. 1 (a) that quantization steps are modified mainly in
AC low-frequency components, which we named Frequency
of Interest (FOI) in the paper. In the Lo-Hi compression
method, JPEG compression has 26 FOIs, HEVC compres-
sion has 31 FOIs, and VVC compression has 34 FOIs There-
fore, we employ these DCT basis functions in the basis
attention block to extract the FOIs of an image, and focus
more on recovering information within these FCs.

QS residual in BAB. In the Lo-Hi compensation, we also
pay attention to the overall variations of quantization steps.
The residuals of standard deviation and default quantization
step indicate which FCs are lost more in the FOIs. Therefore,
we use the normalization residuals in Fig. 1 (b) as the weights
of these FOIs to strongly compensate for the frequency with
a larger residual.



Figure 1. The statistical information of FOIs in our Lo-Hi sensitive quantization on JPEG, HEVC, and VVC (from Left to right, respectively).

3. Supplementary Experiment Results

3.1. Lo-Hi sensitive compression

We evaluated the compression performance on the testing
dataset on JPEG, HEVC, and VVC, wherein four compres-
sion conditions for each compression standard are consid-
ered. From the rate-distortion curves in Fig. 2, it can be
seen that our compression module effectively preserves per-
ceptual quality while significantly saving bitrates compared
with the default compression. Meanwhile, BD-rate savings
derived from our Lo-Hi compression gradually decreased as
the compression computational complexity increased from
JPEG to VVC.

3.2. Qualitative results

Comprehensive visual results of compensation frame-
works evaluated on JPEG, HEVC, and VVC are showcased
in Fig. 5, Fig. 6, and Fig. 7, respectively. Among four com-

pression conditions of each compression standard, our Lo-
Hi co-design frameworks consistently offer high perceptual
quality in the context of reality, details, and brightness.

Figure 2. Rate-distortion performance of default compression and
Lo-Hi sensitive compression. The corresponding BD rates are
reported in Table 2 in Section 5.2.1 of our main manuscript.



Figure 3. Visual results of object detection evaluated on HEVC at two compression conditions.

Figure 4. Rate mAP curves under JPEG, HEVC, and VVC compression (from left to right, respectively). Curves are plotted for our Lo-Hi
co-design frameworks (Lo-Hi NAFNet), the generative model (BSRGAN with 23 RRDB blocks), the regression model (NAFNet), and the
default compression. The corresponding BD rates are reported in Table 4 in Section 5.4 of our main manuscript.

3.3. Machine Vision Results

The experiment of object detection in Section 5.4 of our
main manuscript demonstrates that our Lo-Hi co-design
framework is robust in machine vision tasks. Rate mAP
curves under JPEG, HEVC, and VVC compression are de-
picted in Fig. 4. It can be seen that our framework achieves
remarkable improvement in detection accuracy, especially
at low bitrates. Fig. 3 showcases the visual detection re-
sults evaluated on HEVC at two compression conditions,
wherein default compression, BSRGAN, and NAFNet are
compared with our Lo-Hi NAFNet. At the high compres-
sion ratio, the "refrigerator" can be correctly detected in our
framework while the others give wrong detection results. At
the relatively low compression ratio, all images of evaluated
frameworks preserve better quality for objective detection.
Even though, the "oven" and "refrigerator" can be accurately
detected in our framework, while the others fail at detecting
"oven" and still provide wrong detection of "refrigerator".

3.4. Complexity of Basis Attention Block

As a plug-in FOI compensation module, BAB is a
lightweight network with strong floating-point computation
capabilities as shown in Table 1. Compared to increasingly
complex regression models, the additional parameters and

inference time introduced by BAB are negligible.

Table 1. The complexity of the BAB.

Parameter(M) Operations (GFLOPs) Time(s)
0.054 291.19 0.115

References
[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on

single image super-resolution: Dataset and study. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2017.

[2] Claude Elwood Shannon. A mathematical theory of communi-
cation. ACM SIGMOBILE mobile computing and communica-
tions review, 5(1):3–55, 2001.

[3] Xinfeng Zhang, Weisi Lin, Ruiqin Xiong, Xianming Liu, Siwei
Ma, and Wen Gao. Low-rank decomposition-based restoration
of compressed images via adaptive noise estimation. IEEE
Transactions on Image processing, 25(9):4158–4171, 2016.



Figure 5. Qualitative comparisons of compensation frameworks on JPEG at four compression conditions. For each sample, QF values of 10,
20, 40, 50 are presented from top to bottom.



Figure 6. Qualitative comparisons of compensation frameworks on HEVC at four compression conditions. For each sample, QP values of
45, 41, 37, 33 are presented from top to bottom.



Figure 7. Qualitative comparisons of compensation frameworks on VVC at four compression conditions. For each sample, QP values of 45,
41, 37, 33 are presented from top to bottom.
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