
GaussHDR: High Dynamic Range Gaussian Splatting via Learning Unified
3D and 2D Local Tone Mapping

Supplementary Material

Basis Red Green Blue

(a)

(b)

Channel 1 Channel 2 Channel 3 Channel 4

Figure 1. (a) By multiplying a factor to different RGB channels, we can control the white balance. (b) We visualize the 4-dimension context
features channel by channel, which shows that different channels focus on capturing the tone-mapping characteristics of various regions.

1. Additional Implementation Details

Datasets. The original image resolutions of HDR-NeRF [2]
synthetic and real datasets are 800 × 800 and 3216 ×
2136, respectively. We operate on the 1

2 scale for syn-
thetic scenes, i.e., a resolution of 400 × 400, and the
1
4 scale for real scenes, i.e., a resolution of 804 × 534.
For the four additional HDR-Plenoxels [3] real scenes,
desk and plant scenes contain five different exposure times
{t1, t2, t3, t4, t5}, while character and coffee scenes include
only three exposure times {t1, t3, t5}. Consequently, we
compute the averaged LDR-OE (t1, t3, t5) metrics across
the four scenes and the averaged LDR-NE (t2, t4) metrics
over the desk and plant scenes. The original resolution of
HDR-Plenoxels datasets is 5952× 4480. We operate on the
1
6 scale, leading to a resolution of 992× 746.
Training Details. When employing 3DGS [5] and Scaffold-
GS [8] representations, we adhere to the same training pa-
rameters as those specified in [5] and [8], respectively. For
our local tone mapper and uncertainty model, the learning
rate is initially set to 5× 10−4 and exponentially decays to
5× 10−5.

2. Additional Results

2.1. Performance Comparison

The HDR irradiance, tone mapper, and context features are
coupled during the scene-specific optimization. However,
once we have obtained the HDR radiance field, we can still
control the white balance by multiplying a factor to different
channels, as shown in Fig. 1(a). Similarly, we can ignore

the context features and switch to other known global tone
mappers for different styles, since the context features are
only applicable to the learned local tone mapper.

2.2. Performance Comparison
We have presented the quantitative comparison results un-
der the Exp-3 setting in the main paper. Here, we pro-
vide the results under Exp-1 setting, which strictly fol-
lows HDR-NeRF [2] by randomly selecting one exposure
from {t1, t3, t5} for each view and keeping it fixed dur-
ing training. The quantitative results for the real and syn-
thetic datasets are listed in Tab. 2 and Tab. 3, respectively.
Per-scene quantitative comparison outcomes are depicted in
Tabs. 4 to 7. Additionally, we offer more examples of LDR
and HDR qualitative results in the supplementary matearial,
as demonstrated in Fig. 2 and Fig. 3, respectively. We also
present three video demos corresponding to three different
scenes: bathroom from HDR-NeRF [2] synthetic datasets,
flower from HDR-NeRF real datasets, and character from
HDR-Plenoxels [3] datasets. All the results further demon-
strate that our method achieves state-of-the-art performance
by improving both HDR and LDR learning.

2.3. Ablation on Uncertainty Learning
In the main paper, to investigate the effect of uncertainty
learning, we perform experiments using a mixed loss func-
tion defined as L = βL3d +(1−β)L2d, which simply com-
bines L3d and L2d through weighted summation. Then, we
plot the performance variations of I∗3d and I∗2d with respect
to the hyper-parameter β. Here, we show the results of more
scenes, as depicted in Fig. 4, indicating that different scenes



Table 1. Additional ablation results on HDR-NeRF[2] datasets. Pos. indicates using Gaussian position as context feature for local tone-
mapping. LDR PSNR denotes the average metric over all 5 exposures. All experiments are under the Exp-1 setting.

Method
HDR-NeRF [2] Real Scenes HDR-NeRF [2] Synthetic Scenes

LDR PSNR LDR PSNR HDR PSNR

(a) Ours-3DGS (with raw Pos.) 32.68 40.21 36.91
(b) Ours-3DGS (with fourier-encoded Pos.) 32.95 40.63 37.09
(c) Ours-3DGS 33.58 41.32 37.41

(d) Ours-Scaffold-GS (direct learnable weights) 34.03 42.01 38.12
(e) Ours-Scaffold-GS (3-layer MLPs, 128 nodes) 34.75 42.43 38.67
(f) Ours-Scaffold-GS 34.69 42.57 38.60

Table 2. Quantitative comparisons on HDR-NeRF [2] and HDR-Plenoxels [3] real datasets. Metrics are averaged over all scenes. LDR-OE
and LDR-NE denote the LDR results with exposure {t1, t3, t5} and {t2, t4}, respectively. The training exposure setting is Exp-1.

Method

HDR-NeRF [2] Real Scenes HDR-Plenoxels [3] Real Scenes

LDR-OE (t1, t3, t5) LDR-NE (t2, t4) LDR-OE (t1, t3, t5) LDR-NE (t2, t4)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
HDR-NeRF [2] 31.63 0.948 0.069 31.43 0.943 0.069 - - - - - -
HDR-GS [1] † 33.56 0.964 0.024 31.18 0.960 0.027 30.18 0.943 0.044 27.63 0.916 0.056
Ours (3DGS) 34.18 0.965 0.019 32.63 0.962 0.021 30.99 0.947 0.041 28.08 0.923 0.050

HDR-Scaffold-GS [8] ∗ 34.09 0.967 0.016 31.88 0.964 0.019 31.05 0.944 0.045 28.13 0.916 0.059
Ours (Scaffold-GS) 35.37 0.972 0.014 33.68 0.969 0.016 32.24 0.954 0.031 28.98 0.932 0.041

† We re-implement HDR-GS [1] under Exp-1 setting for fair comparison.
∗ We replace the scene representation in HDR-GS from 3DGS [5] to Scaffold-GS [8] to establish a baseline for our method utilizing Scaffold-GS.

exhibit varying balances between L3d and L2d. However,
our uncertainty-based modulation can robustly achieve op-
timal results across diverse scenes.

?? in the main paper can be viewed as a regularization
term that encourages the model to learn meaningful uncer-
tainties or variances. In this part, we also try to directly em-
ploy learnable weights for the dual LDR results without any
regularization. As shown in Tab. 1(d), this approach results
in a performance drop, again highlighting the effectiveness
of our uncertainty modeling.

2.4. Ablation on Tone-mapper MLPs
Since RGB channels may have different tone-mapping char-
acteristics in real-world scenarios. Hence, using channel-
specific MLPs for tone mapper is helpful, which has been
verified in the HDR-NeRF [2] paper. Here, we also experi-
ment with larger tone-mapper MLPs with deeper layers and
more hidden nodes, as listed in Tab. 1(e). We can see that
larger MLPs do not bring further improvements, but will
increase the training and inference cost.

2.5. Ablation on Context Feature
In the main paper, we claim that utilizing pixel positions
in image space for 2D local tone mapping is infeasible, as
we need to distinguish the same pixel position across dif-
ferent views. However, we can directly leverage Gaussian
positions as tone-mapping context features and render them
into image space. We conduct ablation experiments for
this with 3DGS [5] representation, since Scaffold-GS [8]
utilizes anchor context features to predict Gaussian posi-
tions. As listed in Tab. 1(a,b), it will cause a degraded

performance with either raw Gaussian positions or Fourier-
encoded ones. Using Gaussian positions implies that vari-
ous Gaussians that are far apart must possess distinct tone-
mapping characteristics. However, in fact, different spatial
locations may exhibit similar characteristics.

We also visualize the 4-dimension context feature chan-
nel by channel in Fig. 1(b), which indicates that different
channels focus on capturing the tone-mapping characteris-
tics of various regions.

3. Limitations

Despite the significant enhancements in HDR reconstruc-
tion and LDR fitting capabilities provided by GaussHDR,
some limitations remain. First, our method relies on
COLMAP [10] to extract the initial point cloud and com-
pute camera poses. In other words, we must use tripod-
mounted cameras to capture multi-exposure images at each
sampled view. However, a more general application sce-
nario could involve utilizing a hand-held camera to cap-
ture a monocular video around the scene, where each frame
(or view) has a single exposure level, making it diffi-
cult to match images captured under different exposures in
COLMAP. Therefore, a potential direction for future work
is to develop a COLMAP-free version of GaussHDR. Sec-
ond, it is promising to introduce depth priors to enhance ge-
ometry reconstruction by utilizing off-the-shelf depth mod-
els [4, 6, 7, 9, 11, 12]. Finally, our method focuses on static
scenes and lacks the ability to perform HDR reconstruction
in dynamic environments, which is also an area worth ex-
ploring.



Table 3. Quantitative comparisons on HDR-NeRF [2] synthetic datasets. Metrics are averaged over all scenes. LDR-OE and LDR-NE
denote the LDR results with exposure {t1, t3, t5} and {t2, t4}, respectively. HDR denotes the HDR results. The training setting is Exp-1.

Method
LDR-OE (t1, t3, t5) LDR-NE (t2, t4) HDR

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
HDR-NeRF [2] 39.07 0.973 0.026 37.53 0.966 0.024 36.40 0.936 0.018
HDR-GS [1] † 39.35 0.977 0.012 38.01 0.976 0.013 22.58 0.840 0.075
Ours (3DGS) 41.51 0.984 0.008 41.03 0.983 0.009 37.41 0.969 0.017

HDR-Scaffold-GS [8] ∗ 42.21 0.986 0.005 40.44 0.986 0.006 26.11 0.915 0.062
Ours (Scaffold-GS) 42.94 0.988 0.004 42.02 0.988 0.005 38.60 0.975 0.011

† We re-implement HDR-GS [1] under Exp-1 setting for fair comparison. Note that the authors of HDR-GS utilize HDR ground truth (GT) for
supervision during training on synthetic datasets, whereas our re-implementation does not include this supervision.
∗ We replace the scene representation in HDR-GS from 3DGS [5] to Scaffold-GS [8] to establish a baseline for our method utilizing Scaffold-GS.

Table 4. Per-scene quantitative comparisons on HDR-NeRF [2] real datasets. LDR-OE and LDR-NE denote the LDR results with exposure
{t1, t3, t5} and {t2, t4}, respectively. The training exposure setting is Exp-1.

Method
Box Computer Flower Luckycat

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LDR-OE

HDR-NeRF [2] 31.54 0.953 0.068 32.42 0.950 0.077 29.81 0.948 0.069 32.85 0.938 0.062
HDR-GS [1] † 34.39 0.973 0.016 34.41 0.967 0.020 31.62 0.956 0.037 33.82 0.961 0.022
Ours (3DGS) 35.87 0.976 0.012 34.99 0.967 0.020 31.84 0.958 0.024 34.03 0.961 0.020

HDR-Scaffold-GS [8] ∗ 34.66 0.974 0.012 34.55 0.965 0.017 32.70 0.967 0.019 34.43 0.963 0.016
Ours (Scaffold-GS) 36.24 0.979 0.010 35.50 0.970 0.015 34.12 0.971 0.014 35.61 0.970 0.015

LDR-NE

HDR-NeRF [2] 31.40 0.944 0.079 31.21 0.931 0.098 30.05 0.949 0.058 33.13 0.948 0.051
HDR-GS [1] † 30.17 0.967 0.021 32.78 0.966 0.023 30.21 0.954 0.039 31.55 0.954 0.026
Ours (3DGS) 32.57 0.972 0.014 34.18 0.966 0.022 30.52 0.956 0.027 33.24 0.956 0.022

HDR-Scaffold-GS [8] ∗ 31.87 0.970 0.015 33.16 0.964 0.019 30.68 0.964 0.021 31.80 0.957 0.019
Ours (Scaffold-GS) 32.93 0.974 0.013 34.95 0.968 0.017 32.35 0.970 0.016 34.48 0.965 0.016

† We re-implement HDR-GS [1] under Exp-1 setting for fair comparison.
∗ We replace the scene representation in HDR-GS from 3DGS [5] to Scaffold-GS [8] to establish a baseline for our method utilizing Scaffold-GS.
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Table 5. Per-scene quantitative comparisons on HDR-Plenoxels [3] real datasets. LDR-OE and LDR-NE denote the LDR results with
exposure {t1, t3, t5} and {t2, t4}, respectively. The training exposure setting is Exp-1.

Method
Character Coffee Desk Plant

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LDR-OE

HDR-GS [1] † 34.96 0.978 0.027 27.79 0.943 0.049 28.78 0.922 0.045 29.18 0.930 0.054
Ours (3DGS) 36.73 0.980 0.025 28.35 0.947 0.046 29.14 0.925 0.041 29.76 0.934 0.051

HDR-Scaffold-GS [8] ∗ 36.81 0.979 0.029 28.31 0.946 0.043 28.64 0.919 0.049 30.44 0.930 0.059
Ours (Scaffold-GS) 38.24 0.983 0.018 29.31 0.955 0.032 29.91 0.933 0.035 31.48 0.945 0.040

LDR-NE

HDR-GS [1] † - - - - - - 27.08 0.912 0.050 28.17 0.920 0.061
Ours (3DGS) - - - - - - 27.30 0.917 0.044 28.85 0.929 0.055

HDR-Scaffold-GS [8] ∗ - - - - - - 27.03 0.911 0.053 29.23 0.920 0.065
Ours (Scaffold-GS) - - - - - - 27.41 0.922 0.038 30.55 0.941 0.044

† We re-implement HDR-GS [1] under Exp-1 setting for fair comparison.
∗ We replace the scene representation in HDR-GS from 3DGS [5] to Scaffold-GS [8] to establish a baseline for our method utilizing Scaffold-GS.

Table 6. Per-scene quantitative comparisons on HDR-NeRF [2] synthetic datasets (Part 1). LDR-OE and LDR-NE denote the LDR results
with exposure {t1, t3, t5} and {t2, t4}, respectively. HDR denotes the HDR results. The training exposure setting is Exp-1.

Method
Bathroom Bear Chair Diningroom

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LDR-OE

HDR-NeRF [2] 36.26 0.949 0.037 42.91 0.990 0.010 32.45 0.905 0.081 41.23 0.986 0.010
HDR-GS [1] † 38.06 0.963 0.020 41.61 0.989 0.005 35.07 0.952 0.024 38.26 0.979 0.014
Ours (3DGS) 41.12 0.975 0.008 44.44 0.992 0.003 37.05 0.968 0.014 39.63 0.981 0.017

HDR-Scaffold-GS [8] ∗ 41.21 0.977 0.008 44.56 0.992 0.003 36.36 0.966 0.016 44.87 0.994 0.002
Ours (Scaffold-GS) 42.08 0.981 0.006 45.40 0.993 0.002 37.65 0.971 0.012 45.21 0.994 0.002

LDR-NE

HDR-NeRF [2] 33.44 0.926 0.046 41.19 0.987 0.012 30.78 0.886 0.083 37.99 0.979 0.013
HDR-GS [1] † 36.03 0.963 0.024 41.69 0.988 0.005 34.05 0.951 0.026 34.62 0.976 0.020
Ours (3DGS) 41.10 0.977 0.008 43.85 0.992 0.003 36.53 0.967 0.015 38.78 0.980 0.021

HDR-Scaffold-GS [8] ∗ 40.61 0.979 0.008 42.10 0.992 0.004 35.89 0.965 0.017 41.00 0.993 0.003
Ours (Scaffold-GS) 41.71 0.982 0.007 44.43 0.993 0.002 37.14 0.970 0.013 43.33 0.993 0.003

HDR

HDR-NeRF [2] 33.97 0.925 0.048 43.22 0.991 0.008 34.14 0.924 0.069 38.57 0.981 0.015
HDR-GS [1] † 15.48 0.739 0.125 30.99 0.961 0.027 20.47 0.751 0.115 18.86 0.860 0.074
Ours (3DGS) 34.87 0.943 0.024 41.47 0.987 0.007 36.75 0.961 0.019 34.82 0.967 0.028

HDR-Scaffold-GS [8] ∗ 22.28 0.873 0.061 29.79 0.970 0.021 24.27 0.842 0.163 26.60 0.952 0.037
Ours (Scaffold-GS) 36.22 0.952 0.017 42.23 0.988 0.005 37.79 0.966 0.017 38.61 0.983 0.007

† We re-implement HDR-GS [1] under Exp-1 setting for fair comparison.
∗ We replace the scene representation in HDR-GS from 3DGS [5] to Scaffold-GS [8] to establish a baseline for our method utilizing Scaffold-GS.

Table 7. Per-scene quantitative comparisons on HDR-NeRF [2] synthetic datasets (Part 2). LDR-OE and LDR-NE denote the LDR results
with exposure {t1, t3, t5} and {t2, t4}, respectively. HDR denotes the HDR results. The training exposure setting is Exp-1.

Method
Dog Desk Sofa Sponza

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LDR-OE

HDR-NeRF [2] 37.77 0.981 0.016 37.84 0.972 0.023 38.29 0.977 0.014 34.49 0.958 0.034
HDR-GS [1] † 42.28 0.991 0.004 39.81 0.980 0.007 41.75 0.989 0.004 37.99 0.972 0.016
Ours (3DGS) 43.06 0.992 0.004 42.28 0.987 0.004 43.04 0.990 0.003 41.43 0.986 0.007

HDR-Scaffold-GS [8] ∗ 43.31 0.993 0.003 41.72 0.987 0.004 43.26 0.992 0.003 42.43 0.990 0.004
Ours (Scaffold-GS) 43.76 0.994 0.002 43.04 0.990 0.003 43.44 0.992 0.003 42.91 0.991 0.004

LDR-NE

HDR-NeRF [2] 36.52 0.976 0.018 35.26 0.960 0.029 38.35 0.976 0.014 33.41 0.950 0.038
HDR-GS [1] † 40.66 0.990 0.004 38.47 0.980 0.007 41.55 0.989 0.004 36.99 0.975 0.015
Ours (3DGS) 42.24 0.991 0.004 42.12 0.987 0.004 42.34 0.991 0.003 41.25 0.988 0.006

HDR-Scaffold-GS [8] ∗ 40.52 0.992 0.004 40.46 0.987 0.004 41.91 0.991 0.004 41.02 0.990 0.004
Ours (Scaffold-GS) 42.12 0.993 0.003 42.76 0.989 0.003 42.03 0.992 0.003 42.60 0.992 0.003

HDR

HDR-NeRF [2] 37.72 0.980 0.016 43.38 0.993 0.007 39.05 0.976 0.017 32.33 0.939 0.049
HDR-GS [1] † 23.02 0.926 0.037 29.11 0.773 0.082 26.60 0.928 0.046 16.12 0.782 0.095
Ours (3DGS) 36.36 0.973 0.016 43.98 0.993 0.006 36.70 0.966 0.016 34.32 0.964 0.023

HDR-Scaffold-GS [8] ∗ 24.33 0.934 0.040 31.40 0.929 0.044 28.42 0.947 0.032 21.81 0.870 0.095
Ours (Scaffold-GS) 37.52 0.978 0.012 43.83 0.993 0.005 36.99 0.969 0.013 35.64 0.972 0.014

† We re-implement HDR-GS [1] under Exp-1 setting for fair comparison.
∗ We replace the scene representation in HDR-GS from 3DGS [5] to Scaffold-GS [8] to establish a baseline for our method utilizing Scaffold-GS.
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Figure 2. Qualitative LDR comparisons. Error maps in column 2, 4 and 6 show the MSE error compared to the ground truth, where color
from blue to red indicates the error from small to large. Our method can reduce LDR fitting errors in some regions.
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Figure 3. Qualitative HDR comparisons. Our method leads to stable HDR reconstruction results compared to the baselines.
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Figure 4. Performance variations of I∗3d and I∗2d with respect to β when simply using a loss combination L = βL3d +(1−β)L2d. Different
scenes exhibit varying optimal values of β. In contrast, our uncertainty-based modulation (green dash line) can robustly achieve optimal
results across diverse scenes without the selection of hyper-parameter β. Results include all of HDR-NeRF [2] real and synthetic scenes.
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