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7. Supplementary
In this supplementary, we include more details on the fol-
lowing aspects:
• We report experimental results and conduct analysis of

single C2ST performance in Section 7.1.
• We provide detailed experimental results of C2ST in Sec-

tion 7.2.
• We present visualizations of performance sensitivity to

depth in Section 7.3.
• We provide detailed results of different memory sizes in

Section 7.4.
• We discuss the source-target classifier architecture in Sec-

tion 7.5.

7.1. Experimental Results and Analysis of single
C2ST

In Section 3.3, we critically discussed the limitation of
the sequential covariate shift detection method [24]. Their
methodology presents a fundamental trade-off dilemma:
While a unified classifier architecture demonstrates compu-
tational efficiency, its binary discriminative framework in-
trinsically lacks the capacity for task-id recognition. Con-
versely, maintaining specific classifiers per task effectively
preserves discriminability inter tasks at the cost of increased
resource overhead with increasing tasks. In the main text,
we conducted a theoretical analysis of the second method
and presented experimental results. Now, we turn to the
first method, namely single-C2ST, for discussion.

In the single-C2ST, a unified source-target classifier is
maintained. For the classifier, all previously learned tasks
are treated as ID, so the source samples will be drawn as
evenly as possible from the respective memory buffers of
all learned tasks. This architecture enables each sample to
undergo only a single evaluation pass through the classifier,
thereby achieving significant computational resource effi-
ciency. However, this method exhibits two significant limi-
tations. Firstly, as previously discussed, it inherently lacks
the capability for task-id prediction, making it unsuitable
for open-world TIL. Secondly, as incremental learning pro-
gresses, the number of ID tasks increases substantially and
the number of source samples drawn from each task de-
creases, resulting in degraded classifier performance. The
detailed OOD and TIL detection performance are respec-
tively presented in Table 5 and Table 6. The task-id in the ta-
bles refers to the identity of the most recently seen task. TP,
FP, TN, and FN represent the IDs correctly predicted, OODs
incorrectly predicted as IDs, OODs correctly predicted, and
IDs incorrectly predicted as OODs, respectively. As shown

Task-id
OOD Detection Result

F1 ScoreTP FP TN FN
1 1920 30 5970 80 97.22
2 170 0 6000 3830 8.15
3 150 0 6000 3850 7.23
4 110 0 6000 3890 5.35

Average 29.49

Table 5. Detailed OOD detection performance of single-C2ST on
MNIST dataset with GEM.

Task-id
Task Incremental Learning Accuracy

Task1 Task2 Task3 Task4 Task5
1 99.49 58.27 54.70 52.89 51.28
2 99.35 99.08 61.68 70.71 32.14
3 98.43 98.49 98.44 54.65 43.65
4 98.75 97.95 97.44 99.36 46.62
5 98.84 97.46 96.84 98.24 99.49

Average ACC: 98.17 FT: -1.25

Table 6. Detailed TIL performance of single-C2ST on MNIST
dataset with GEM.

in Table 5, almost all OOD samples can be detected, but
the majority of ID samples will also be incorrectly identi-
fied as OOD. When the number of learned tasks increases,
the composition of the source sample becomes more com-
plex, and the ID samples only belong to one of the tasks,
so it becomes more difficult to correctly predict the ID test
sample as ID. The OOD target sample does not match any
of them, so the classifier can still accurately identify them
as OOD, providing sufficient training data for TIL. As de-
picted in Fig. 5, H2ST and single-C2ST exhibit comparable
performance in TIL. However, the hierarchical architecture
demonstrates considerable improvement in OOD detection,
with an average increase of 62.06% in F1.

Figure 5. TIL and OOD detection performance of single C2ST and
H2ST. H2ST demonstrates superior OOD detection performance.



7.2. Detailed Results of C2ST
We present a comparative analysis between H2ST and
C2ST in Figure 2. Here we present comprehensive C2ST
results, detailed in Table 8 and Table 9. While C2ST ex-
hibits improved OOD detection performance compared to
baseline methods, it still demonstrates a measurable perfor-
mance gap relative to our proposed H2ST.

7.3. Visualization of Performance Sensitivity to
Depth

While Fig. 3 visualizes the depth sensitivity analysis for
CoRe50 with ER, we extend this analysis to other cases in
Fig. 8. The results demonstrate that H2ST achieves supe-
rior overall performance and shows greater stability. Par-
ticularly in cases with a large number of classes per task,
such as CIFAR-100 and Mini-ImageNet, the performance
of C2ST deteriorates rapidly as the number of learned tasks
increases. In contrast, H2ST consistently maintains stable
performance throughout the incremental learning process.

7.4. Detailed Results of Different Memory Sizes
In Fig. 4, we present the trend of various metrics relative to
memory size per task. We now provide detailed results of
different memory sizes in Table 10 and Table 11. Memory
size significantly impacts OOD detection, and we conduct
an in-depth analysis. In H2ST, source samples are randomly
drawn from memory buffers, with the fundamental assump-
tion that these samples sufficiently represent the task dis-
tribution. An insufficient memory size leads to insufficient
coverage of the task distribution, inadequate sample diver-
sity, and increased distribution estimation bias. Conversely,
simply increasing memory size is not an optimal solution,
as the information gain from additional samples becomes
negligible beyond a certain extent and larger memory di-
rectly leads to higher overhead. Therefore, finding an opti-
mal memory size that balances representativeness and com-
putational efficiency is crucial for effective OOD detection.

7.5. Different Source-Target Classifier Architec-
tures

In Section 5.1, we employ a fully connected neural net-
work with a single hidden layer of 128 ReLU units, de-
noted as MLP-I, as the source-target classifier. While this
lightweight architecture demonstrates promising perfor-
mance, we further explore alternative architectures. Specif-
ically, we investigate deeper fully connected neural net-
work with five hidden layers (MLP-II) and ten hidden layers
(MLP-III), along with convolutional neural network with
four convolutional layers (CNN-I), to provide comprehen-
sive architectural comparisons. Fig. 6 illustrates the num-
ber of parameters of these models. We conduct experiments
on CIFAR-10, with the F1 scores shown in Fig. 7 and the
average metrics summarized in Table 7. The MLP-I with

Figure 6. Parameters of different source-target classifier architec-
tures.

Figure 7. F1 score sensitivity to depth of different source-target
classifier architectures.

Architecture ACC" FT" F1" TA"
MLP-I 84.71 -7.90 93.54 92.82
MLP-II 83.39 -6.83 90.72 78.67
MLP-III 51.14 -7.05 52.90 11.38
CNN-I 84.37 -6.83 89.68 79.16

Table 7. Performance comparison across different source-target
classifier architectures.

the fewest parameters achieves the best OOD detection ef-
fect, while the MLP-III with the most parameters performs
the worst, misclassifying a large number of OOD samples
as ID. This phenomenon is particularly relevant in contin-
ual learning characterized by non-stationary data streams,
where source-target classifiers must be updated online to
adapt to new distributions. While deeper models might the-
oretically offer greater representational capacity, their in-
creased complexity hinders rapid adaptation to new dis-
tributions. In contrast, models with simpler architecture
demonstrate superior adaptability, enabling faster adjust-
ments in response to distributional shifts. Moreover, since
each classifier only performs binary classification, simpler
models are generally sufficient to meet the demands. Fur-
thermore, their lower computational overhead makes them
more practical for applications.



Dataset
TIL MNIST SVHN CIFAR-10 CIFAR-100 Mini-ImageNet CoRe50 Stream-51 Average

F1" TA" F1" TA" F1" TA" F1" TA" F1" TA" F1" TA" F1" TA" F1" TA"
ER [45] 85.46 90.01 74.13 83.05 86.04 88.72 60.18 73.09 56.67 73.57 86.15 91.50 79.29 88.60 75.42 84.08

GEM [37] 86.34 90.31 74.92 83.65 87.88 89.35 64.65 74.32 57.84 73.54 90.77 93.64 79.72 87.89 77.45 84.67

Table 8. OOD detection performance of C2ST.

Dataset
TIL MNIST SVHN CIFAR-10 CIFAR-100 Mini-ImageNet CoRe50 Stream-51 Average

ACC" FT" ACC" FT" ACC" FT" ACC" FT" ACC" FT" ACC" FT" ACC" FT" ACC" FT"
ER [45] 96.14 -1.73 94.23 -3.16 83.72 -9.01 45.56 -14.06 31.02 -11.76 75.04 -4.70 67.56 -8.66 70.47 -7.58

GEM [37] 98.67 -0.56 92.64 -5.20 84.41 -7.80 44.97 -14.40 32.15 -10.86 77.03 -3.50 67.22 -11.68 71.01 -7.71

Table 9. TIL performance of C2ST.

Dataset
TIL Memory Size MNIST SVHN CIFAR-10 CIFAR-100 Mini-ImageNet CoRe50 Stream-51 Average

F1" TA" F1" TA" F1" TA" F1" TA" F1" TA" F1" TA" F1" TA" F1" TA"

ER [45]

40 23.82 68.16 63.65 78.27 52.89 73.78 31.31 66.69 31.60 67.23 44.68 76.09 39.11 73.77 41.01 72.00
100 64.77 80.14 70.20 81.86 84.65 87.09 56.20 71.81 55.60 72.88 83.90 88.69 66.78 81.57 68.87 80.58
200 92.03 93.78 77.60 84.60 88.89 89.59 84.21 82.02 79.34 81.59 94.11 94.06 89.24 90.68 86.49 88.05
300 95.21 96.06 82.05 85.71 93.56 92.43 92.18 86.76 85.37 82.16 97.47 95.23 94.27 92.85 91.44 90.17

GEM [37]

40 23.53 68.03 69.45 79.92 57.41 75.13 34.03 66.42 30.89 66.78 52.18 77.67 41.05 74.39 44.08 72.62
100 68.86 82.29 75.83 83.66 78.57 84.26 55.54 72.24 54.20 72.46 87.62 90.09 72.82 83.34 70.49 81.19
200 91.55 93.43 77.87 85.20 93.54 92.82 89.98 84.37 83.88 82.69 95.38 93.94 91.63 91.23 89.12 89.10
300 95.41 96.09 77.63 83.73 94.41 93.01 94.23 85.16 92.90 85.53 98.01 95.69 96.02 94.23 92.66 90.49

Table 10. Comparison of the OOD detection performance across different memory sizes.

Dataset
TIL Memory Size MNIST SVHN CIFAR-10 CIFAR-100 Mini-ImageNet CoRe50 Stream-51 Average

ACC" FT" ACC" FT" ACC" FT" ACC" FT" ACC" FT" ACC" FT" ACC" FT" ACC" FT"

ER [45]

40 97.34 -2.21 91.95 -6.34 79.50 -14.15 41.12 -19.14 28.06 -16.79 72.56 -10.74 64.57 -11.23 67.87 -11.51
100 97.80 -1.45 92.62 -5.67 79.30 -13.80 43.68 -15.70 29.99 -15.09 77.13 -4.31 74.37 -8.19 70.70 -9.17
200 98.49 -0.80 93.45 -4.24 84.34 -8.98 45.09 -14.23 31.91 -10.56 78.26 -1.42 74.33 -5.50 72.27 -6.53
300 98.71 -0.32 94.94 -2.59 85.76 -6.76 45.70 -12.45 33.27 -9.81 79.07 -2.93 75.22 1.98 73.24 -4.70

GEM [37]

40 97.37 -2.30 93.32 -4.76 74.78 -20.65 42.39 -17.74 29.56 -15.24 69.12 -11.56 66.31 -10.83 67.55 -11.87
100 97.90 -1.51 94.04 -3.27 78.72 -15.54 43.17 -16.65 29.86 -15.15 77.21 -4.20 74.03 -8.87 70.70 -9.31
200 98.43 -1.01 92.64 -5.20 84.71 -7.90 45.91 -13.90 30.80 -12.24 78.31 -1.64 69.36 -13.13 71.45 -7.86
300 98.50 0.00 95.07 -2.48 85.37 -7.53 46.28 -12.25 33.66 -10.56 80.32 2.24 73.87 -4.90 73.29 -5.07

Table 11. Comparison of the TIL performance across different memory sizes.



(a) CoRe50 dataset with GEM. (b) Stream-51 dataset with ER.

(c) Stream-51 dataset with GEM. (d) Mini-ImageNet dataset with GEM.

(e) CIFAR-100 dataset with GEM. (f) CIFAR-10 dataset with GEM.

Figure 8. Performance sensitivity to depth of (a) CoRe50 dataset with GEM, (b)Stream-51 dataset with ER, (c)Stream-51 dataset with
GEM, (d)Mini-ImageNet dataset with GEM, (e)CIFAR-100 dataset with GEM and (f) CIFAR-10 dataset with GEM.
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