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A. More Related Work
A.1. Diffusion Models
Diffusion models, pioneered by Ho et al.’s Denoising Dif-
fusion Probabilistic Model (DDPM) [20], have revolution-
ized visual generation. Song et al.’s Denoising Diffusion
Implicit Models (DDIM) [47] significantly accelerated the
generation process, enabling the creation of high-quality
images in significantly less time. Building on this founda-
tion, Rombach et al.’s Latent Diffusion Model (LDM) [39]
emerged as a powerful framework for high-resolution image
synthesis and text-to-image generation. Building upon text-
to-image diffusion models, multiple fine-tuning techniques
[22, 32, 41] have been developed to incorporate diverse
generation tasks (e.g., artistic style or subject-driven image
synthesis) with low resource consumption. For example,
LoRA [22] adds parallel modules into denoising network
and adopts trainable low-rank matrices to compress the
original high-dimensional model parameters. DreamBooth
[41] works by fine-tuning text-to-image generation model
with a few subject images to associate a less frequently used
word-embedding with a specific subject, while maintain-
ing the diversity of generated images through class-specific
prior preservation loss.

B. More Implementation Details
B.1. UNet-Based Information Enhanceme Module
In Section 4.2.1, we design a UNet-based Information En-
hancement Module (IEM) to compensate for watermark
information loss during reconstruction process, and the
architecture of U-Net is publicly available at https:
//github.com/ouyangjiahong/image2image-
baseline-model). The loss function Ltotal of the cus-
tomized HiNet, defined as Eq. (4), is a weighted sum of
concealing loss Lcon, revealing loss Lrev , low-frequency
wavelet loss Lfreq , and reconstruction loss Lrec. Here, N
denotes the total number of training images, and Lrec is de-
fined in Eq. (5).

Ltotal = λcLcon + λrLrev + λfLfreq + λreLrec (4)

Lrec =

N∑
n=1

ℓ2

(
I(n)w , I(n)rw

)
(5)

Following [24], Lcon denotes ℓ2 norm between the image I
and watermarked image Iw, Lrev represents ℓ2 between the

extract watermark W’ and watermark W, and Lfreq denotes
ℓ2 norm between the low-frequency sub-bands of I and Iw.
The parameters λc = 10.0, λr = 1.0, and λf = 10.0 re-
main unchanged in [24], and λre is set to 10.0.

B.2. Diffusion Architectures
The DDIM [47] and DDPM [20] model used in our exper-
iments is implemented by [35] with the same U-Net hy-
perparameters as [14]. It is publicly available at https:
//github.com/phizaz/diffae.git. Specifically,
the base channel of the U-Net architecture is set to 128, and
the channel multiplier is configured as [1, 1, 2, 3, 4]. Addi-
tionally, a global attention layer is applied at a 16×16 reso-
lution using a single attention head.

B.3. Other Experimental Settings
We use the Adam optimizer [27] with betas 0.9 and 0.999,
as well as epsilon 1×e−8. The learning rate is set as 1×e−4

for 128 × 128 images and the batch size is set as 32. We
adopt the base linear schedule with the diffusion step T =
1000. The sampling steps for DDPM, DDIM and Classifier-
Free Guidance are set to T = 1000, T = 100, and T =
100. For Classifier-Free Guidance, we select a subset of
50,000 images across 100 categories from ImageNet as the
training set, and the guidance scale ω is set as 1.8. The
watermark images used in our experiments are all selected
from DIV2K [2].

Table 7. The average cosine similarity (COS) of spectral features
between diffusion-generated images and training images.

Model Dataset DFT DCT cA DWT-avg

DDIM

FFHQ 0.988 0.986 0.987 0.937
ImageNet 0.978 0.964 0.966 0.802
BigGAN 0.984 0.975 0.979 0.808

StyleGAN2 0.992 0.988 0.991 0.867

DDPM
FFHQ 0.995 0.992 0.991 0.891

BigGAN 0.984 0.973 0.977 0.842
StyleGAN2 0.995 0.990 0.992 0.862

Classifier-free ImageNet 0.967 0.990 0.991 0.824

C. Additional Experiments
C.1. The DWT and DCT Spectra of Training and

Generated Images
In this subsection, we further analyze the cA (approxima-
tion component), cH (horizontal component) and cV (verti-
cal component) of the DWT [5] coefficients, as well as the
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Figure 12. The mean DCT spectra of diffusion-generated and
training images.

DCT [3] spectra for all sampled and training sub-datasets.
The results, presented in Fig. 12, indicate that the sampled
distribution preserves spectral features of the training dis-
tribution. We also report the cosine similarity (COS) be-
tween the spectral features of the training and generated im-
ages for three diffusion models, as illustrated in Tab. 7. For
DCT and DFT, the spectral similarities between the train-
ing and diffusion-generated images all exceeds 0.95. How-
ever, we observe that the spectral similarities of cV , cH
and cD components are relatively low (around 0.8). We at-
tribute this primarily to the limited ability of traditional dif-
fusion models to generate high-frequency details in images
[36, 37].

We also trained DDIM on 1 million images from VG-
GFace2 and ImageNet, respectively. For ImageNet, a wa-
termark image was embedded into the DWT spectrum of
all training images. The results, shown in Fig. 13, con-
firm that DDIM-generated images reliably preserve spec-
trum features of their training data.

C.2. The PRNU Feature of Training and Generated
Images

We perform a further statistical analysis on diffusion-
generated images using Photo Response Non-Uniformity
(PRNU) [17], a fingerprint feature typically used for nat-
ural images. We randomly select 5,000 images as the ref-
erence set and another 5,000 images as the test set from
each training and diffusion-generated sub-dataset, then ex-

Figure 13. The mean spectra of diffusion-generated and training
images.

Figure 14. The cosine similarity between the PRNU features of
the training and generated images. The part before the "_" symbol
denotes the training model, while the part after it indicates the cor-
responding training dataset.

tract the PRNU feature for each. Next, we calculate the co-
sine similarity of the PRNU feature within and across sub-
dataset, with the results reported in Fig. 14. The PRNU fea-
tures of most diffusion-generated images exhibit high sim-
ilarity to those of the corresponding training images, with
cosine similarities exceeding 0.6. In contrast, the cosine
similarity between the PRNU features of FFHQ [26] im-
ages and StyleGAN2 [1] images (trained on FFHQ) is ap-
proximately 0.15. However, the cosine similarity between
reference and test images from ImageNet [13] is low (ap-
proximately 0.05); likewise, the cosine similarity between
the PRNU features of images generated by Classifier-Free
Guidance [19] and those of ImageNet images is notably low
(around 0.04). These findings may offer new insights for the
detection and traceability of diffusion-generated images.

C.3. More Decision Threshold of Different Water-
marks

We select two additional images from DIV2K as water-
marks and randomly sample 50,000 clean images from
FFHQ, LSUN, and ImageNet as reference images, respec-
tively. Then we extract watermarks from reference images
and compute the cosine similarity between each extracted
watermark and the original watermark. The cosine similar-



Figure 15. The cosine similarity distribution of extracted and orig-
inal watermarks for FFHQ, LSUN, and ImageNet.

Figure 16. The extracted watermarks of unconditional progressive
generation with DDPM sampler. t denotes the sampling step.

Figure 17. The generated images of DDIM, and all images are
classified as watermarked images.

ity distribution is demonstrated in Fig. 15. indicating that
for clean images, there is an upper threshold for the cosine
similarity between the extracted watermark and the original
watermark, which is used as the decision threshold γ for
CoprGuard.

C.4. Extracted Watermarks of Unconditional Pro-
gressive Generation

We also perform watermark extraction for the unconditional
progressive generation. We used a DDPM sampler with dif-
fusion steps T = 1000, and the results, as shown in Fig. 16,
indicate that incomplete image sampling will reduce the
quality of the extracted watermarks.

Figure 18. The generated images of Classifier-Free Guidance, and
all images are classified as watermarked images.

Figure 19. The generated images of Stable Diffusion. We also
show the extracted watermarks and the corresponding cosine sim-
ilarities (COS).

C.5. More Generated Images of CoprGuard

Fig. 17, Fig. 18 and Fig. 19 show more images generated
by DDIM, Classifier-Free Guidance, as well as Stable Dif-
fusion, and all generated images are correctly classified as
watermarked images.

C.6. The Impact of Fine-tuning on CoprGuard

We first trained DDIM with 50, 000 watermarked images
and then fine-tuned the pre-trained DDIM with 5000 clean
images (10% of the training set) and Tab. 8 shows the water-
mark detection ratio Pu. CoprGuard remains effective after
50 epochs of full-parameters fine-tuning of DDIM.



Table 8. Watermark detection ratio Pu after model fine-tuning.

Epoch 0 5 10 30 50 100
Pu 100% 96.2% 95.7% 92.6% 36.9% 0

Figure 20. Visual comparison of DIAGNOSIS and CoprGuard.

C.7. Watermarked Image Visualization
Fig. 20 shows visual comparisons between CoprGuard and
DIAGNOSIS. The clean images are selected from Poke-
mon. We see that, compared to DIAGNOSIS, CoprGuard
performs better in term of edge distortion.
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