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7. Summary of Supplementary Materials
In our supplementary materials, we provide:
1. Supplementary video. 8
2. Additional details including explanation of reference

RIR setup, implementations of XRIR and baselines as
well as experiments setup, see Section 9.

3. More details about ACOUSTICROOMS, see Section 10.
4. Single-room RIR prediction results compared to prior

works, see Section 11.
5. Additional experiments and ablation studies of the xRIR,

see Section 12.
6. Additional qualitative samples, RIR prediction compari-

son 13.

8. Supplementary Video
In the supplementary video, we provide a brief summary
of our work and qualitative samples of audio rendered with
different predicted RIRs in simulation as well as real envi-
ronments. For best perceptual experience, please turn the
Audio ON and use headphone when watching.

For demos in the supplementary video that demonstrate
audio rendering along trajectories in real scenes, we con-
volve our predicted single-channel Room Impulse Response
(RIR) at each point in the trajectory with a Head-Related
Impulse Response (HRIR) from a predefined Head-Related
Transfer Function (HRTF). This process yields binaural
RIRs, which capture spatial effects. We then convolve these
binaural RIRs with the source audio to obtain the binaural
audio along these trajectories.

9. Additional Details
Further explanation on reference RIR setup: Our ref-
erence RIRs setup is practically useful. Model trained on
this setup is able to predict new RIRs without any refer-
ence RIRs re-measurement when either source or receiver
freely moves in the target room. Our method is capable of
addressing both scenarios below:

i) Fixed reference receiver, multiple sources: Measure
reference RIRs between a fixed receiver and sources at var-
ious locations, then the model predicts the RIR for the fixed
receiver and a new source location (ACOUSTICROOMS
setup).

ii) Fixed reference source, multiple receivers: Measure
reference RIRs between a fixed source and receivers at var-
ious locations, then the model predicts the RIR for the
fixed source and a new receiver location (HearAnythin-
gAnywhere setup).

A model trained on i) can be directly applied to ii) by
switching source and receiver subscripts (due to symmetry
of wave equation for single-channel RIR), as shown in our
sim-to-real transfer experiment. We adopt scenario i) in our
task, where the receiver always matches the reference re-
ceiver location.

XRIR: For XRIR, we implement a Vision Transformer
block Fvt with 6 multi-head attention layers (8 heads, hid-
den size 512). For panorama depth map, the center pixel
corresponds to the receiver location. Two spherical angles
maps are initialized for equirectangular projection from the
depth map to 3D coordinates map. In the vision transformer
module, the 3D coordinates map is divided into 16 × 32
patches, resulting in all reflection-based features such as gr,rf
and gs,rf of dimension 256 × 512. Direct path features are
calculated using sinusoidal positional encoding on each 3D
coordinate with 20 frequency bins, and are then projected
into 256-dimensional vectors via MLP. Similarly, the time
basis vector Tb is calculated by sinusoidal positional encod-
ing with 10 frequency bins for each time index, where the
length of Tb is same as the length of spectrogram, 310. Be-
fore performing weight combination, we further preprocess
the reference RIRs by time-shifting them based on the dis-
tance difference between the target and reference source-
receiver pairs, divided by the speed of sound. For loss cal-
culation, we set λ = 0.01 to balance the STFT loss and the
energy decay loss.

Few-Shot RIR: Unlike the approach and the problem setup
in [32], which use binaural echoes where the source and
receiver are co-located to predict a target binaural RIR,
we use reference RIRs measured with the source at differ-
ent locations from the receiver location to predict single-
channel RIR at a target source. This is very important since
the echo input used by [32] are infeasible to obtain un-
der the single-channel RIR scenario, because it is not rea-
sonable in physics to co-locate source and receiver at the
same location to measure the single-channel RIR. In addi-
tion, we also omit the RGB image for the visual input and
use only depth maps as inputs to the vision branch of the
Few-shot RIR model, due to the weak correspondence be-
tween room semantics and material properties in ACOUSTI-
CROOMS dataset. We also emphasize that we use panorama
depth images captured from each reference source loca-
tion instead of egocentric depth images as the depth inputs.
For all depth observations, we rendered at a resolution of
128 × 256. Except for the adaptations above, all other im-
plementation details follow the Few-Shot RIR model [32].

Diff-RIR: We use their released Github code and model



checkpoints to perform evaluations on all rooms in the
Hearing-Anything-Anywhere Dataset [56]. We strictly fol-
lowed the inference and evaluation settings in the paper, and
obtained the same results in terms of the metric errors re-
ported in the paper (Mag and Env error metrics) to make
sure there are no implementation issues. And then we eval-
uate their inference results on our three acoustic metrics
which are more related to perceptual quality of the RIRs:
EDT error, C50 error and T60 error.

Experiments Setup: For cross-room RIR prediction ex-
periments on ACOUSTICROOMS, we manually select 10
sources in each simulated room as candidate reference
sources to make sure that their spatial locations are evenly
distributed within the scene as much as possible. For the
seen setting, we split training and test set within each room
by receivers, where the RIRs of 90% of receivers belong to
training split and remaining 10% belong to test split. For
the unseen setting, we split the data by rooms. For each
room category, we use 90% of rooms for training and 10%
rooms for testing. During both training and testing, we ran-
domly select K = 1, 4, 8 reference RIRs from these candi-
date sources. And for each K, we train a separate model on
the dataset.
For experiments on the Hearing-Anything-Anywhere
Dataset [56], we sample reference K = 8 RIRs from their
selected 12 reference RIRs in each room. In this real-world
dataset, the source has specific directivity patterns which
are not captured in our pretrained model using ACOUS-
TICROOMS. Therefore, we further finetune the pretrained
XRIR model on these 12 selected RIRs to make sure a fair
comparison with Diff-RIR [56]. Specifically, in each itera-
tion during finetuning, we randomly sample 8 of 12 as refer-
ence RIRs and predict a target RIR sampled from remaining
4 RIRs. We also use the same validation set as Diff-RIR to
select the model checkpoint for testing. We select the one
with lowest validation loss to evaluate on the test split of the
dataset. It is note-worthy that even though XRIR is fine-
tuned, compared to the training time of Diff-RIR on these
few shot samples (6 hours / scene), XRIR converges much
faster than Diff-RIR, with a matter of minutes. This helps
us to quickly perform sim-to-real transfer across different
environments efficiently.

10. Dataset Details

In this section, we present details about our large-scale
simulated RIR dataset, ACOUSTICROOMS, used for cross-
room RIR prediction task. ACOUSTICROOMS contains
260 rooms from 10 different categories, simulating a to-
tal of 30,000 RIRs from different source-receiver pairs.
ACOUSTICROOMS features professional room architecture
designs of high quality, covering a wide range of room cat-
egories, including: apartment, auditorium, bathroom, bed-

room, cafe, listening room, living room, meeting room, of-
fice and restaurant, as shown in Figure 6. The area of rooms
ranges from 20m3 to 1000m3, with diverse range of sizes
and geometries. ACOUSTICROOMS uses a realistic and
commercial acoustics simulation platform, Treble, to per-
form single-channel RIR simulation. The platform supports
a wide variety of simulation methods along with specific
settings. To obtain more realistic RIR data as well as simu-
late large-scale data, we adopt the hybrid-based simulation.
At low frequency bands, an advanced wave-based method
is used to capture more subtle wave interaction effects such
as diffraction and resonance. At high frequency bands, we
use geometric-based simulation that combines two simula-
tion techniques: image-source technique and stochastic ray-
tracing technique.

Source Receiver Placement: To set up the simulation for
each room, we first choose the sources and receivers and
place them at different locations. For sources, we use omni-
directional source devices without particular directivity pat-
terns since our goal is not to overfit the model to a particular
device pattern. Similarly, for receivers, we use monaural re-
ceivers such that they do not model specific HRTF patterns.
Depending on the size of rooms, we place 10 to 100 sources
and 25 to 100 receivers per room, to ensure they sufficiently
cover the whole area of the rooms. To determine the loca-
tion of each source and receiver, we apply a set of place-
ment rules to avoid interference among devices and room
surfaces when the distance becomes too small to cause issue
in the simulation quality. We require that: i) Sources should
be at least 0.5m away from each room surface, 1.0m away
from other sources and 1.0m away from receivers. ii) Re-
ceivers should be at least 0.5m away from room surface and
at least 0.5m away from the sources. Given these rules, we
apply a point-picking algorithm to randomly sample valid
source and receiver locations within each room at different
height level from 0.5m to 2.5m.

Material Assignment: Once the source and receivers are
determined, we assign materials to room surfaces by associ-
ating their semantic labels with particular material category.
Treble platform provides a large-scale material database
with 332 specific materials from 11 material categories,
with each category containing 30 different material coef-
ficients on average. We define the mapping between each
semantic labels of room surfaces and the 11 material cate-
gories. In each room, each semantic label of a particular sur-
face gets randomly mapped to one of the specific material
with a set of acoustics coefficients under the material cate-
gory. Different from existing RIR datasets [3, 6, 52], this
random assignment ensures enough diversity in the mate-
rial properties of the room surfaces. Even two rooms share
similar geometries and semantic objects, they could have
very different acoustics behavior due to differences in their
specific acoustics coefficients of materials.



Figure 6. A visualization of different room categories in ACOUSTICROOMS.

Figure 7. An overview of procedures to simulate RIRs in ACOUSTICROOMS.

Simulation Setup: Once sources and receivers are in place
and room materials get assigned, we set up the simulation
by specifying the hybrid mode to split the geometric-based
and wave-based method. We choose the crossover fre-
quency to be fcross = 710Hz between two methods such that
wave-based effects could be sufficiently captured across dif-
ferent rooms and objects of different size. For geometric-
based simulation, we use image source method up to re-
flection order of 4 with 50k rays emitting from the source.
For refection orders higher than 4, we apply stochastic ray-
tracing method with 5000 rays. With this configuration, we
simulate the RIR of each room until 60dB energy decay
to ensure all possible acoustics effects are sufficiently cap-
tured.

11. Comparison on Single-Room RIR Predic-
tion

Adaptation of XRIR: Although XRIR focuses on solving
cross-room RIR prediction task, it could be easily adapted
to single-room RIR prediction task as well. By removing all
the components related to reference RIRs, we extract the ge-
ometric and spatial features related to only target source and
receiver positions. We then follow [50] to use their implicit
neural decoder to perform RIR waveform synthesis. Specif-
ically, given a time basis vector B, and the outputs from
Geometric feature extractor gdir, gr,rf and gs,rf, we learn a
implicit neural mapping function to synthesize time domain
RIR waveform from the outer product between B with the
three features: Ât = Finr(gdirB

T, gr,rfB
T, gs,rfB

T). We
train the adapted model with same loss function as in [50],
the multi-resolution STFT loss combined with waveform
L2 loss.



Model Apartment 1 Apartment 2 FRL Apartment 2

EDT↓ C50 ↓ T60 ↓ EDT ↓ C50 ↓ T60 ↓ EDT ↓ C50 ↓ T60 ↓

NAF 0.077 0.426 7.508 0.066 0.453 7.925 0.088 0.420 6.308
INRAS 0.027 1.036 6.514 0.025 0.843 5.816 0.022 0.634 2.224
xRIR 0.026 1.000 6.192 0.031 0.932 5.755 0.021 0.587 1.972

Model Room 2 FRL Apartment 4 Office 4 Mean

EDT ↓ C50 ↓ T60 ↓ EDT ↓ C50 ↓ T60 ↓ EDT ↓ C50 ↓ T60 ↓ EDT ↓ C50 ↓ T60 ↓

NAF 0.056 0.407 4.969 0.085 0.421 7.475 0.081 0.337 6.760 0.076 0.411 6.824
INRAS 0.020 0.555 1.990 0.022 0.625 2.145 0.014 0.610 3.251 0.022 0.717 3.657
xRIR 0.019 0.541 1.910 0.021 0.561 2.140 0.013 0.502 2.767 0.022 0.687 3.456

Table 3. Performance comparison on single-room RIR prediction task on six rooms in SoundSpaces 1.0 - Replica dataset in terms of EDT
(s), C50 (dB), and T60 (%) error metrics.

Experiment Setup: In single-room RIR prediction task,
the goal is to the fit scene acoustic with dense RIR obser-
vations. Therefore, we use the standard dense RIR dataset,
SoundSpaces 1.0 Replica, to perform the experiment. Fol-
lowing prior works [31, 50], we use the six scenes from
Replica. But instead of using binaural RIR data, we use
single-channel RIR data by extracting the first channel of
ambisonic RIR data of these scenes. For each scene, we
split the RIR data into training and test set with a ratio of
9:1. We cut the RIR to the maximum length of 8000 sam-
ples (0.363s) at sampling rate 22,050Hz for all six rooms.
And for panorama image at each receiver location, we ren-
der it by setting the orientation to 0 in the habitat simula-
tor [43].

Baselines: We compare XRIR with two prior works of the
state-of-the-art performance on the dataset, NAF [31] and
INRAS [50]. For both methods, we remove the orientation
conditioning vector to adjust for single-channel RIR pre-
diction, while keeping the remaining implementations the
same. For evaluation, we use the same metrics in the cross-
room RIR prediction task for comparison.

Quantatitive Results: We report individual results for each
of six scenes and their average results and show them in Ta-
ble 3. As could be seen, when compared to NAF, XRIR
outperforms on both EDT and T60 metrics, while slightly
underperforming in C50 error. When compared to INRAS,
XRIR outperform INRAS on 5 out of 6 scenes, except
“Apartment 2”. The reason is due to the fact that the mesh
of “Apartment 2” shows significant amount of holes in a re-
gion, which leads to degraded quality of panorama depth in-
puts. While, INRAS does not suffer from this degradation
since the method samples mesh points instead of render-
ing images. Overall, XRIR, when adapted to single-room
RIR prediction task, shows on par or even better perfor-
mance when compared to these prior arts, demonstrating
the effectiveness of Geometric Feature Extractor to learn the

scene acoustics from local geometric observations (around
receiver).

Method Classroom Dampened Hallway Complex

MAG ENV MAG ENV MAG ENV MAG ENV

Random Across 1.98 4.45 3.571 7.573 3.415 7.571 1.762 6.791
Random Same 0.710 2.182 0.213 1.635 1.104 6.582 0.685 2.831
Linear Interp 0.725 1.890 0.110 0.908 1.082 5.566 0.637 2.370
Nearest Neigh 0.600 2.003 0.108 0.916 0.793 5.589 0.542 2.498
Diff-RIR (K=12) 0.486 1.826 0.085 0.883 0.724 5.173 0.442 2.197
xRIR (K=8) 0.456 1.824 0.093 0.892 0.718 5.320 0.466 2.142

Table 4. Sim-to-Real Transfer Results using MAG and ENV
metrics on HearingAnythingAnywhere dataset.

Method EDT C50 T60

XRIR w.o Reference RIRs 0.166 3.925 32.69
XRIR w.o Direct Path Module 0.061 1.596 12.33
XRIR w.o Reflection Module 0.059 1.498 11.93
XRIR (full) 0.055 1.457 10.53

Table 5. Ablation Study: Comparison of different ablated XRIR
components on ACOUSTICROOMS with unseen splits. We report
EDT (s), C50 (dB), and T60 (%) error metrics

12. Additional Experiments and Ablation
Studies

Additional Comparisons on HearingAnythingAny-
where dataset: We use MAG from [8] and ENV from
[24] to further evaluate waveform similarity. For fair
comparison, we evaluate our model on the first 0.435s of
RIRs due to model length constraints. As shown in Table
4, our method performs similarly to DiffRIR on these
metrics but outperforms in perceptual metrics like EDT and
C50 (Table 2 main paper), which better reflect perceptual



Figure 8. Additional qualitative comparisons on RIR waveform predictions in ACOUSTICROOMS.

Figure 9. Additional qualitative comparisons on RIR waveform predictions on the Hearing-Anything-Anywhere Dataset.

quality of rendered RIRs.
Ablation Studies:
We perform ablation studies on the components of XRIR

by considering the followings:
• XRIR w.o Reference RIRs: This ablated variant is the

same as our model’s adaptation to single-room RIR pre-



diction task. Since there are no reference RIRs as inputs,
the model utilizes the implicit neural function to synthe-
size the target RIR.

• XRIR w.o Direct Path Module: By removing the Direct
Path Module, the model only considers the relationship
between sources / receivers and room geometry informa-
tion, without computing the direct path features.

• XRIR w.o Reflection Module: By removing the Reflec-
tion Module, the model only considers the spatial rela-
tionship between sources and receivers without taking lo-
cal geometry information into account.
For the above ablation variants, we perform experiments

on ACOUSTICROOMS under unseen settings. We set the
number of reference RIRs K = 8 for models that take
reference RIRs as inputs. As shown in Table 5, our full
model outperforms all ablated variants across all metrics.
It is note-worthy that without providing reference RIR as
inputs to the model, the model is not able to synthesize rea-
sonable RIRs by just relying on geometric and positional
inputs. Also, removing either Direct Path module or Re-
flection module will lead to degraded performance across
all acoustics metrics, demonstrating the importance of cap-
turing full spatial and geometric information for accurate
RIR predictions.

Furthermore, we study the importance of finetuning
as well as the pretraining on our simulation dataset. In
general, we find that simulation data helps the model
capture general acoustic properties, such as geometry and
material effects. Finetuning on just 12 real samples allows
the model to adapt to specific factors like the source’s
directivity, improving EDT and C50 metrics compared to
training from scratch or without finetuning, as shown in
Table 6.

Setting EDT (s) C50 (dB) T60 (%)

Scratch 0.322 4.322 7.381
Pretrained 0.204 3.427 4.685
Finetuned 0.092 1.614 6.020

Table 6. Importance of finetuning and pretraining on HearingAny-
thingAnywhere dataset (classroom).

In addition, to study the impact of scale of ACOUSTIC-
ROOMS on the performance of model, we retrain our model
on different number of rooms using xRIR (8-shot) in the
unseen setting, while keeping the test split the same. As
shown in Table 7, performance improves with more data
but diminishes as room count increases.

13. Additional Qualitative Samples
We provide additional qualitative results of comparisons
between our model XRIR and the baseline methods on

Rooms EDT (s) C50 (dB) T60 (%)

65 0.088 1.813 13.79
130 0.062 1.578 11.46
260 0.055 1.457 10.53

Table 7. Impact of data scale on model performance.

the predicted RIRs on both the simulation dataset and real
dataset.

As shown in Figure 8 and 9, we visualize predicted
RIR waveforms versus ground truth RIRs on three simula-
tion environments (apartment, restaurant and bathroom) in
ACOUSTICROOMS as well as two real environments (hall-
way and classroom) in the Hearing-Anything-Anywhere
dataset. At same location in these environments, RIRs pre-
dicted by XRIR align more closely with the ground truth
RIRs, demonstrating the effectiveness of XRIR in RIR pre-
dictions under both simulated and real settings.
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