
HoGS: Unified Near and Far Object Reconstruction
via Homogeneous Gaussian Splatting

Supplementary Material

This supplementary material first provides a detailed com-
parison of our homogeneous representation with existing
inverted spherical representation [9] (Sec. A). We also ana-
lyze the methods’ convergence behavior (Sec. B) and poten-
tial design choices in methods and experiments (Sec. C). An
experiment in Sec. D assesses whether our method can rep-
resent an infinitely far object (i.e., the Moon) in our dataset.
Finally, Sec. E shows additional and detailed results in each
scene we tested.

The supplementary video visualizes the results in a more
intuitive manner, and we strongly encourage the reader to
refer to it.

A. Inverted Spherical vs. Homogeneous Repre-
sentations

Similar to the homogeneous representation, the inverted
spherical representation in NeRF++ [9] is also designed to
represent distant objects effectively. We compare the per-
formance of inverted spherical and homogeneous represen-
tation in 3D scene representation.

Inverted Spherical Representation [9]. We define a
point p = [x, y, z]⊤ ∈ R3 to be represented with the in-
verted spherical representation p′ = [θ, ϕ, w′]⊤ as:

θ = arctan
(
y
x

)
,

ϕ = arcsin
(

z
∥r∥

)
,

w′ = 1
r ,

(S1)

where w′ is the inverted depth and r =
√
x2 + y2 + z2 >

1. The inverted spherical representation can be converted to
Cartesian by: 

x = sinϕ cos θ
w′ ,

y = sinϕ sin θ
w′ ,

z = cosϕ
w′ .

(S2)

Comparison Results. The quantitative results presented
in Table S1 and Table S2 show that homogeneous repre-
sentation consistently outperforms inverted spherical rep-
resentation in indoor and near-object scenarios. Although
inverted depth w′ effectively represents distant points in its
range (0, 1], its mapping of points with depth within 1 to its
range [1,+∞) hinders the performance on nearby objects.
In contrast, homogeneous coordinates offer a balanced rep-
resentation of near and far objects, using the weight w to
account for depths.
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Figure S1. Loss convergence of 3DGS and HoGS. The loss
curves indicate that with our setup on unbounded scenes, both
3DGS and HoGS have not fully converged by 30, 000 iterations,
while with 50, 000 iterations they become nearly minimal.
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Figure S2. Average distance of 10% farthest points. In both
the TRAIN and DL3DV 21 scenes, the 10% farthest points in our
method reach significantly farther distances compared to 3DGS.
By the end of the training, the farthest points in our method reach
approximately 1, 200 meters in the TRAIN dataset (compared to
410 meters in 3DGS) and 520 meters in DL3 Scene 21 (compared
to 97 meters in 3DGS) in the physical space.

B. More Convergence Analysis

While the main paper presents a convergence analysis in a
simple setup, we further analyze the convergence behaviors.

Extended Training. The main paper uses 50, 000 itera-
tions for both the original 3DGS and our HoGS. To validate
the number of iterations for unbounded scenes, we present
the training process of 100, 000 iterations in an unbounded
scene (the TRAIN scene in the Tank&Temples dataset [3])
in Fig. S1. The loss curves in Fig. S1 show the relative loss,
where the loss values are normalized by setting the loss at
50, 000 iterations as the reference point. Both 3DGS and



Dataset Mip-NeRF 360 Dataset Tanks&Temples DL3DV-10K Benchmark
Method | Metric SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Inverted Spherical 0.828 27.93 0.196 0.855 24.15 0.169 0.918 29.85 0.117
HoGS (Ours) 0.828 27.92 0.194 0.858 24.27 0.166 0.919 29.93 0.114

Table S1. Inverted spherical vs. homogeneous representations. This table reports the performance of Inverted Spherical and Homoge-
neous (HoGS) methods on three datasets: Mip-NeRF 360 [1], Tanks&Temples [3], and DL3DV-10K Benchmark [4]. Results are evaluated
using three metrics: SSIM, PSNR, and LPIPS. HoGS consistently shows competitive or better performance across all datasets.

Method Tanks&Temples (Near) Tanks&Temples (Far)
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Inverted Spherical 0.882 25.54 0.137 0.976 30.78 0.032
HoGS (Ours) 0.883 25.69 0.135 0.976 30.77 0.031

Method DL3DV-10K (Near) DL3DV-10K (Far)
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Inverted Spherical 0.926 30.46 0.101 0.993 40.43 0.013
HoGS (Ours) 0.927 30.53 0.098 0.993 40.55 0.013

Method Mip-NeRF360 (Indoor) Mip-NeRF360 (Outdoor)
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Inverted Spherical 0.917 30.40 0.157 0.746 25.13 0.223
HoGS (Ours) 0.930 31.38 0.163 0.747 25.14 0.219

Table S2. Performance of inverted spherical and homogeneous
methods across different scenarios. This table highlights the
performance of Homogeneous and Spherical representations on
Tanks&Temples, DL3DV-10K, and Mip-NeRF360 datasets. Ho-
mogeneous representation consistently outperforms the inverted
Spherical representation in indoor and near-object scenarios.

our method reduce the training losses until around 50, 000
iterations, which are almost converging there, demonstrat-
ing that 50, 000 iterations are reasonable for unbounded
scene reconstruction in the main paper’s experiments.

Convergence Behavior in Real Scenes. Here, we ana-
lyze the convergence behaviors in real scenes by tracking
the average displacement of the Gaussian centers farthest
10% from the world origin over iterations. Figure S2 show
that far points in our method move more quickly to dis-
tant positions than the original 3DGS in unbounded scenes
(TRAIN [3] and DL3DV Scene 21 [4]), underscoring the
efficiency of our approach in reconstructing distant objects.

PSNR Convergence Analysis. We also show a PSNR-
iteration curve comparing HoGS and 3DGS as shown in
Fig. S3. HoGS shows a slower initial convergence due to the
homogeneous optimization of near and far objects, which
requires Gaussians to propagate across the entire scene.
However, as training progresses, HoGS surpasses 3DGS in
PSNR, demonstrating superior reconstruction fidelity and
global consistency.
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Figure S3. PSNR-iteration curve of our HoGS and 3DGS. HoGS
exhibits a slower initial convergence due to the homogeneous opti-
mization of near and far objects, requiring Gaussians to propagate
across the scene. However, as training progresses, HoGS surpasses
3DGS in PSNR, demonstrating its superior reconstruction fidelity
and global consistency.

C. More Design Choices

C.1. Skybox Initialization

Following the methods in [2, 7], we can essentially use sky-
box [2] initialization to enhance the points in distant scenes
and the 3DGS and our proposed methods. We thus test
the skybox initialization to both the 3DGS and our pro-
posed methods. Specifically, we added 100, 000 blue points
as initial points on the upper hemisphere, with a radius of
1, 000 unit distance, which corresponds to approximately
1.1 kilometers in DL3DV Scene 21 (estimated using the
base width of the George Washington statue in front of
the Indiana Statehouse) and 2.1 kilometers in the TRAIN
dataset (estimated from the width of railway tracks). As
shown in Table S3, the results indicate that incorporating a
skybox improves the accuracy of distant scenes in the 3DGS
method. This enhancement arises because the skybox pro-
vides additional guidance for representing distant elements
like clouds, otherwise challenging for 3DGS to capture.

In contrast, adding a skybox to our method does not im-
prove the accuracy of distant scenes. This is because our ap-
proach, even without skybox initialization, effectively lever-
ages the attributes of homogeneous coordinates to represent
both near and distant objects equally. Our method accu-
rately represents distant areas without additional priors by
inherently keeping consistent scaling across varying depths.
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Figure S4. Impact of threshold selection on near and far object classification. We evaluate the effects of changing the threshold used
to classify far and near objects in the depth mask used for the experiment. When the threshold is reduced to 3%, near objects such as parts
of buildings and shrubs (green bounding box) and park trees (red bounding box) are mistakenly classified as far. Conversely, increasing
the threshold to 7% results in some far objects, like distant buildings, being misclassified as near, as shown by the blue bounding box. To
balance accuracy and meaningful far-object coverage, we select the 5 % threshold as the optimal trade-off.
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Figure S5. Reconstruction of an infinitely far (i.e., the Moon) scene. With a 20x increase in the learning rate (lr), our method successfully
represents the Moon, even at its (near-)infinity distances, as highlighted by the red bounding box. In contrast, 3DGS fails to achieve similar
results, even when the lr is largely increased, or when incorporating a skybox with different (1, 000 and 100, 000) unit distances. Notably,
while adding a skybox to 3DGS improves the fidelity of cloud details compared to simply increasing lr, it remains incapable of generating
a realistic appearance of the Moon.

Method TRAIN (Near) TRAIN (Far)
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

3DGS w/o skybox 0.854 23.86 0.151 0.960 28.49 0.063
3DGS w/ skybox 0.851 23.67 0.153 0.962 28.58 0.063
Ours w/o skybox 0.854 23.70 0.147 0.976 30.42 0.044
Ours w/ skybox 0.849 23.33 0.149 0.975 30.23 0.046

Method DL3DV Scene 21 (Near) DL3DV Scene 21 (Far)
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

3DGS w/o skybox 0.870 27.72 0.147 0.972 31.23 0.042
3DGS w/ skybox 0.867 27.78 0.152 0.976 32.16 0.038
Ours w/o skybox 0.889 28.81 0.122 0.986 35.48 0.022
Ours w/ skybox 0.890 28.83 0.120 0.986 35.15 0.022

Table S3. Impact of skybox on near and far scenarios. This
table compares the performance of 3DGS and our method (w/
and w/o skybox) on TRAIN and DL3DV Scene 21 datasets across
Near and Far scenarios. Incorporating a skybox initialization can
slightly improve the accuracy of distant scenes in the original
3DGS method but not in our method. Our method effectively rep-
resents both near and far objects even without skybox initializa-
tion.

Scene Threshold Near Far
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

TRAIN
7 % 0.858 23.82 0.143 0.972 29.94 0.048
5 % 0.854 23.70 0.147 0.976 30.43 0.044
3 % 0.848 23.53 0.151 0.982 31.25 0.039

DL3DV Scene 21
7 % 0.893 29.08 0.118 0.982 34.37 0.025
5 % 0.889 28.81 0.122 0.986 35.48 0.022
3 % 0.885 28.60 0.125 0.989 36.80 0.019

DL3DV Scene 97
7 % 0.965 34.63 0.047 0.989 38.69 0.043
5 % 0.962 34.12 0.051 0.992 40.41 0.039
3 % 0.959 33.72 0.054 0.995 42.48 0.036

Table S4. Impact of depth threshold selection on near and far
object accuracy. This table evaluates the performance of near
and far objects across different depth thresholds (7 %, 5 %, and
3 %) on the TRAIN, DL3DV Scene 21, and DL3DV Scene 97
datasets. As the threshold decreases, the accuracy for far objects
consistently improves (e.g., PSNR increases from 29.94 to 31.25
on TRAIN and from 34.37 to 36.80 on DL3DV Scene 21), driven
by a greater share of sky pixels characterized by uniform colors
and high accuracy. However, this improvement in the metrics does
not take what we really want to evaluate, e.g., buildings and moun-
tains, into account.

C.2. Threshold for Near vs. Far in Experiment

In the main paper’s experiment, to evaluate the accuracy for
near and far objects, we use Depth Anything V2 [6] to gen-



Method BICYCLE FLOWERS GARDEN STUMP TREEHILL
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

3DGS 0.770 25.59 0.219 0.609 21.36 0.347 0.869 27.68 0.110 0.775 26.66 0.223 0.649 22.63 0.332
Scaffold-GS 0.768 25.57 0.228 0.610 21.67 0.337 0.869 27.92 0.111 0.777 26.88 0.228 0.664 23.53 0.312
HoGS (Ours) 0.790 25.84 0.183 0.638 22.18 0.311 0.874 27.83 0.098 0.785 26.92 0.195 0.649 22.95 0.310

Method BONSAI COUNTER KITCHEN ROOM
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

3DGS 0.946 32.28 0.178 0.914 29.33 0.182 0.931 31.41 0.115 0.925 31.93 0.198
Scaffold-GS 0.950 33.08 0.169 0.919 29.81 0.177 0.934 31.94 0.113 0.932 32.34 0.181
HoGS (Ours) 0.948 32.56 0.164 0.913 29.25 0.179 0.932 32.04 0.114 0.925 31.67 0.196

Table S5. Comparisons for Mip-NeRF360 outdoor and indoor scenes. 3DGS-based methods’ SSIM, PSNR and LPIPS scores for
Mip-NeRF360 scenes. Outdoor scenes are listed above, while indoor scenes are listed below.

Dataset Mip-NeRF 360 Dataset Tanks&Temples DL3DV-10K Benchmark
Method / Metric SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Mip-Splatting [8] 0.835 27.97 0.182 0.856 24.01 0.160 0.917 29.44 0.116
Multi-Scale 3DGS [5] 0.821 27.73 0.211 0.846 23.92 0.180 0.893 28.23 0.148

HoGS (Ours) 0.828 27.92 0.194 0.858 24.27 0.166 0.919 29.93 0.114

Table S6. Comparison with Mip-Splatting and Multi-Scale 3D Gaussian Splatting.

erate depth maps from input images at their original resolu-
tion. We define distant areas as these maps’ farthest 5 % of
depth values. This threshold is effective because adopting
the 0 % threshold would misclassify distant mountains and
buildings as near objects, evaluating far objects’ accuracy
only on limited sky regions. Here, we additionally tested
thresholds of 3 % and 7 % as shown in Fig. S4 and Table S4.
As the threshold changes from 7 % to 5 % to 3 %, the accu-
racy for far objects improves. This is because the number of
pixels classified as distant objects decreases while the num-
ber of pixels representing the sky remains constant. Typi-
cally characterized by uniform colors and high accuracy, the
sky becomes a more significant proportion of the far-object
pixels as the threshold is reduced. Consequently, the overall
accuracy improves with an increasing share of sky pixels in
the far-object category.

However, it is essential to note that while reducing the
threshold improves the accuracy metrics, it does not mea-
sure the representation of other distant objects, such as
mountains or buildings, which are critical for photorealis-
tic scene reconstruction (see Fig. S4). Hence, we set a 5 %
threshold in the main paper’s experiment, which provides
a balanced trade-off between including enough distant ob-
jects for meaningful evaluation and avoiding the misclassi-
fication of nearby elements.

D. Representing Infinitely Far Objects
We collected a custom dataset containing scenes with the
Moon to assess the reconstruction capability of objects at
infinitely far away1. Figure S5 shows a visual compari-
son. With our method, increasing the learning rate (lr) for

1Due to its proprietary nature, this dataset is used exclusively for ex-
perimental purposes.
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Figure S6. Histogram of w.

the weight parameter w by 20x enabled the accurate recon-
struction of the Moon. In contrast, 3DGS failed to recon-
struct the Moon even with a large lr, with an increase of
400x, producing artifacts that disappear when the viewpoint
changes. Adding a skybox with a 1, 000 unit or 100, 000
unit distance to 3DGS also failed to produce a realistic ap-
pearance of the Moon, where these distances are approxi-
mately 500 m and 50, 000 m, respectively, in the physical
space.

E. Additional Results

We provide quantitative comparisons per scene in Ta-
bles S5–S9, and qualitative results in Figs. S7 and S8 to sup-
plement the main paper. These include detailed figures and
tables showcasing the performance of our method across
various scenes.



Scene Method Overall Near Far
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

TRAIN
3DGS 0.811 22.16 0.214 0.854 23.86 0.151 0.960 28.49 0.063

Scaffold-GS 0.825 22.69 0.200 0.859 23.87 0.146 0.969 30.36 0.053
HoGS (Ours) 0.828 22.60 0.191 0.854 23.70 0.147 0.976 30.43 0.044

TRUCK
3DGS 0.878 25.50 0.152 0.908 27.42 0.130 0.973 30.31 0.022

Scaffold-GS 0.883 25.92 0.139 0.911 27.87 0.118 0.974 30.71 0.020
HoGS (Ours) 0.887 25.94 0.141 0.913 27.68 0.123 0.977 31.11 0.018

Table S7. Comparisons for Tanks&Temples scenes with near/far metrics. 3DGS-based methods’ SSIM, PSNR and LPIPS scores for
Tanks&Temples scenes.

Scene Method Overall Near Far
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

24
3DGS 0.944 31.77 0.094 0.951 32.35 0.085 0.995 41.85 0.006

Scaffold-GS 0.946 31.98 0.090 0.950 32.32 0.084 0.997 44.33 0.003
HoGS (Ours) 0.953 32.70 0.078 0.955 32.95 0.075 0.998 46.82 0.002

26
3DGS 0.904 29.48 0.185 0.911 30.13 0.176 0.994 39.67 0.007

Scaffold-GS 0.895 29.66 0.194 0.902 30.17 0.186 0.995 40.68 0.006
HoGS (Ours) 0.913 30.20 0.165 0.918 30.64 0.159 0.996 41.71 0.005

101
3DGS 0.924 27.54 0.091 0.931 27.97 0.083 0.994 39.59 0.007

Scaffold-GS 0.907 26.94 0.106 0.911 27.20 0.102 0.997 41.01 0.003
HoGS (Ours) 0.936 28.26 0.071 0.939 28.50 0.068 0.998 42.40 0.002

Table S8. Comparisons for DL3DV Benchmark indoor scenes. 3DGS-based methods’ SSIM, PSNR and LPIPS scores for DL3DV
Benchmark indoor scenes.

E.1. Distribution of w

We provide a histogram of the parameter w and the
mean distance for each w on the TRAIN scene from
Tanks & Temples [3]. indicates that w correctly converges
to small values (i.e., w ∼ 0) for distant scenes, and vice
versa.

E.2. Comparison with Mip-Splatting and Multi-
Scale 3D Gaussian Splatting

We provide a comparison with 3DGS-based methods [5, 8]
that focus on anti-aliasing and multi-scale representations.
Even with these methods, our method still maintains state-
of-the-art performance across most metrics.
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Figure S7. Extra visual comparisons on novel view synthesis 1. We present visual comparisons between methods on more test views.
The figure includes ROOM from the Mip-NeRF360 dataset, TRUCK from Tanks&Temples, and scenes 21, 26, and 69 from the DL3DV
benchmark. Key differences in quality are highlighted by insets.
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Figure S8. Extra visual comparisons on novel view synthesis 2. We present visual comparisons between methods on more test views. The
figure includes STUMP, BICYCLE, and TREEHILL from the Mip-NeRF360 dataset; and TRAIN from Tanks&Temples. Key differences
in quality are highlighted by insets.
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