Supplementary Materials for “Homogeneous Dynamics Space for Heterogeneous
Humans”

Xinpeng Liu'?, Junxuan Liang!, Chenshuo Zhang!, Zixuan Cai®, Cewu Lu'?; Yong-Lu Li'?*

1Shanghai Jiao Tong University, 2Shanghai Innovation Institute, 3Soochow University

xinpengliu0907@gmail.com,

zxcaill@stu.suda.edu.cn,

{whitefork, zhangchenshuo, lucewu, yonglu.li}@sijtu.edu.cn

A. Licenses

All the data used are from the open-sourced datasets and for

research purposes only. We give the links to the gathered

datasets here.

* AMASS: https://amass.is.tue.mpg.de/
license.html

e Muscles in Actions: https://musclesinaction.
cs.columbia.edu/

¢ AddBiomechanics: https://addbiomechanics.
org/download_data.html

e Muscles in Time: https://davidschneider.ai/
mint/

e ImDy: https://foruck.github.io/ImDy/

The subfigures of “Activation Dynamics” and “Contrac-
tion Dynamics” in Figure 1 are borrowed from Uchida,
Thomas K., and Scott L. Delp. Biomechanics of move-
ment: the science of sports, robotics, and rehabilitation.
MIT Press, 2021. Figure 4.16 and Chapter 5.

B. Extensive Experiments
B.1. Analysis on Parameters

We compare the size of the models involved in Table 1 in
Table 1. The full HDyS is comparable in #param compared
with previous efforts. In addition, it could process four het-
erogeneous kinematics representations and four heteroge-
neous dynamics representations, which could not be ful-
filled with previous efforts. Moreover, even with a much
smaller model scale, HDyS-32D and HDyS-64D manage to
provide competitive performances, validating the efficacy
of heterogeneous knowledge.

B.2. Extensive Results on Inverse Dynamics
B.2.1 Data Construction

To decompose the contributions of scale and heterogeneity,
we construct two sets of control experiments. The first set

*Corresponding authors.

Table 1. Model size comparison.

Models #params
MiA 5.4M
ImDyS 4.0M
HDyS 3.9M

HDyS-32D  0.6M
HDyS-64D  1.4M

of control experiments were controlled for the same data
scale, and they differed only in whether the data constituted
heterogeneity or not. The second set of control experiments
varies only in the scale of the data.

Thus, we constructed HDyS-50/50 to form the first set
of control experiments with the original HDyS-Single, and
HDyS-Single-50 to form the second set of control exper-
iments with HDyS-Single. In this way, HDyS-Single-50
and HDyS-50/50 formed a third control experiment with
the same data from the target dataset, in which homoge-
neous knowledge in heterogeneous data can be observed.
To construct the other datasets part of HDyS-50/50, we pro-
portionally sampled the training data from other datasets so
that the total amount of data selected was equal to 50% of
the total amount of the target dataset. The details of the
construction are shown in Tab. 2.

B.2.2 More Ablation Studies

An additional ablation study is provided to evaluate the
transformer-based temporal refinement. We remove the
temporal transformer in the ID decoder and report its perfor-
mance in Tab. 3. As shown, substantial performance degra-
dation is observed, validating the refinement of the temporal
transformer.
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Table 2. Composition of training data in Table 2.

Target dataset Model #seq for training
AddBiomechanics MiA ImDy MinT AMASS
HDyS-Single-50 5810 - - - -
AddBiomechanics HDyS-50/50 5810 601 3381 111 1212
HDyS-Single 11621 - - - -
HDyS-Single-50 - 2446 - - -
MiA HDyS-50/50 526 2446 1246 41 632
HDyS-Single - 4891 - - -
Table 3. Ablation study on the transformer-based temporal refinement.
Methods ImDy AddBiomechanics MinT MiA
mPJE| mPJE| RMSE| PCCt RMSE| PCC?T
avg/bst avg/bst avg/bst avg/bst avg/bst avg/bst
HDyS 0.5765/0.4674 0.1189/0.1243 0.0614/0.0615  0.7420/0.7402 11.8/11.6  0.7232/0.7261
HDyS w/o Temporal Refinement  0.7002/0.5334 0.1393/0.1489 0.0666/0.0670  0.7372/0.7325 15.4/15.1  0.5748/0.5788

Table 4. More ablative baselines on GroundLink.

Methods HDyS-Marker HDyS-SMPL HDyS-keypoint HDyS
L-Foot mPJE | 0.0673 0.0591 0.0584 0.0514
R-Foot mPJE | 0.0930 0.0732 0.1047 0.0694

B.2.3 Architectural Clarification and Justification

Our basic idea is to use basic structures wherever possi-
ble to highlight the power of inherent homogeneity. There-
fore, we tend to use basic three-layer MLPs for single-frame
fixed-size inputs (like joint angles) while maintaining non-
linearity modeling ability. Transformers are adopted when
variable-size inputs (like markers and joints) or sequential
inputs (in the ID decoder) are used. The numbers of hidden
dimensions and attention heads are designed to match the
dimensions of inputs/outputs. The number of transformer
layers is selected to match the number of parameters of ex-
isting baselines as listed in Appendix B.1. While we believe
HDyS could be enhanced by more sophisticated architec-
tures like an auto-regressive operation manner, we leave this
for future work.

B.3. More Analysis on Ground Reaction Force Pre-
diction

In Tab. 4, we include some ablative baselines for the influ-
ence of different kinematics representations on GRF esti-
mation, validating the mutual benefit of unifying kinematics
representations again.

B.4. More Analysis on Biomechanical Human Sim-
ulation

Quantitative results are shown in Tab. 5. As shown, increas-
ing the simulation frame rate effectively reduces the simu-
lation error. And HDyS consistently provides competitive

Table 5. Extended results reported in per-frame MSE on biome-
chanical human simulation.

Methods 90FPS  120FPS  150FPS
HDyS-2-steps 0.1860  0.0591  0.0244
Optimized-2-steps  0.1909  0.0607 0.0253
HDyS-3-steps 1.7118  0.5257  0.2125
Optimized-3-steps  1.8306  0.5495 0.2223
HDyS-4-steps 1.8651 1.5721 1.1173
Optimized-4-steps  2.0106  1.7630 0.7081
HDyS-5-steps 2.2233  2.1384  2.0482
Optimized-5-steps  2.6027  2.5147 2.5017

Table 6. Hyperparameters for two primitives. o: fixed variance for
policy. v:discount factor. e:clip range for PPO
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performances. However, drifting errors could still be ob-
served.

B.5. Details of Physical Character Control

We exclude all motion sequences involving sitting on
chairs, walking on treadmills, leaning on tables, stepping
on stairs, or floating in the air. This filtering process yields
a dataset comprising 10,047 high-quality motion sequences
for training and 140 sequences for testing. Following the
PHC setting, as a baseline comparison, we trained two sin-
gle primitives to demonstrate that HDyS enhances physi-
cal character control performance. Each primitive is imple-
mented as a six-layer MLP with units [2048, 1536, 1024,
1024, 512, 512] and employs SiLU as the activation func-
tion. HDyS latents corresponding to key points are incor-



porated as additional observations. The only difference
between the two primitives lies in the input, one without
HDyS latents denoted as Baseline, and the other one with
HDyS latents denoted as Baseline w/ HDyS. For training,
we employ the Adam optimizer with a learning rate of 2e-5,
a batch size of 768, and train the model for 10,000 steps.
The hyperparameters used during training can be found in
Table 6.
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