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Model Dataset number
of classes

number of Images
Train Dev Test

Translator MSCOCO 80 566,747 N/A 202,654
ConceptNet N/A 595,294 N/A N/A
ConceptGenerate N/A 576,944 N/A N/A

CBM

Food-101 101 50,500 20,200 30,300
FGVC-Aircraft 100 3,334 3,333 3,333
Flower-102 102 4,093 1,633 2,463
CUB-200-2011 200 3,994 2,000 5,794
UCF-101 101 7,639 1,898 3,783
DTD 47 2,820 1,128 1,692
HAM10000 7 8,010 1,000 1,005
RESISC45 45 3,150 3,150 25,200
CIFAR-10 10 45,000 5,000 10,000
CIFAR-100 100 45,000 5,000 10,000
ImageNet 1,000 1,281,167 50,000 N/A

Table 6. Detailed statistics of the datasets.

A. Resources
A.1. Dataset
Table 6 provides detailed statistics for all datasets. For
concept translator pre-training, we use the entire Concept-
Net [42] dataset, concepts generated by an LLM (Concept-
Generate), and the training split of MSCOCO [4]. In Hy-
bridCBM training, each dataset is annotated with a one-
word description indicating its super class. We follow the
train/dev/test splits provided by CoOp [56] for Food-101,
Aircraft, Flower-102, UCF-101, and DTD. For CUB, we
randomly sample 10 images per category as the develop-
ment set. For CIFAR-10 and CIFAR-100, 10% of the train-
ing data is set aside for development. For HAM10000, we
use an 80/10/10 split across classes, and for ImageNet, we
evaluate only on the development set.

B. Implementation Details
B.1. Linear Probe
Following CLIP’s implementation, we use encoded images
(prior to projection into the vision-text embedding space)
as input to the classifier, allowing us to evaluate how well
the visual features alone can perform in classification tasks.
We employ cuML’s L-BFGS logistic regression, which is
efficient for large-scale data, with a maximum of 1,000 iter-
ations to ensure convergence.

To determine the optimal L2 regularization strength C,
we perform a binary search on the validation set, beginning
with a range of values [1e6, 1e4, 1e2, 1, 1e→2, 1e→4, 1e→6],
following the approach used in CoOp. Once the bounds of
C are established, we iteratively refine the interval by halv-
ing it over 8 steps, ensuring a precise selection of the final
hyperparameter value for improved model generalization.

Dataset Method Number of Shots
1 2 4 8 16 Full

CUB

Linear Probe 48.57 62.06 73.96 79.44 83.33 84.55
Hybrid

(submodular) 53.81 65.30 73.96 78.75 83.75 84.25

Hybrid
(random) 51.66 64.22 73.92 78.46 83.05 84.12

CIFAR-10

Linear Probe 73.61 86.36 92.37 95.19 96.00 98.05
Hybrid

(submodular) 90.80 92.06 95.73 95.81 96.62 97.93

Hybrid
(random) 90.56 92.24 95.70 95.92 96.78 98.04

CIFAR-100

Linear Probe 46.27 57.43 69.26 76.08 80.24 87.14
Hybrid

(submodular) 47.98 57.82 68.84 75.24 79.36 86.22

Hybrid
(random) 47.96 57.71 68.95 75.74 79.59 86.40

ImageNet

Linear Probe 41.16 54.21 64.76 71.17 75.26 84.37
Hybrid

(submodular) 38.33 51.00 62.11 68.59 73.65 83.67

Hybrid
(random) 37.61 49.34 61.86 68.64 73.57 83.62

Food-101

Linear Probe 61.94 77.14 83.97 87.98 89.98 93.15
Hybrid

(submodular) 68.66 81.85 85.99 87.50 89.34 92.62

Hybrid
(random) 68.08 78.79 86.01 87.37 89.41 92.60

DTD

Linear Probe 33.33 53.66 59.69 68.68 74.17 81.09
Hybrid

(submodular) 45.27 62.00 64.18 70.86 73.23 81.21
Hybrid

(random) 44.98 61.23 64.36 71.16 73.70 81.26

Flower-102

Linear Probe 83.52 94.07 97.60 98.78 99.39 99.47
Hybrid

(submodular) 84.82 92.94 97.04 97.89 98.86 99.23

Hybrid
(random) 84.73 92.98 96.51 98.05 98.86 99.19

UCF101

Linear Probe 61.51 76.63 78.43 84.64 88.16 89.82
Hybrid

(submodular) 67.22 80.39 82.16 86.33 88.77 90.14
Hybrid

(random) 67.83 80.70 82.10 85.62 88.16 89.97

Aircraft

Linear Probe 28.92 34.71 42.33 48.45 56.02 62.86
Hybrid

(submodular) 30.21 36.03 44.58 50.92 58.69 64.92
Hybrid

(random) 30.87 36.36 43.74 50.20 57.49 65.05

HAM10000

Linear Probe 34.33 42.39 45.57 64.58 64.58 81.49
Hybrid

(submodular) 47.26 66.77 66.67 67.56 69.85 82.19
Hybrid

(random) 41.09 41.39 62.99 60.60 60.80 81.89

RESISC45

Linear Probe 62.15 71.92 83.44 86.60 89.96 93.28
Hybrid

(submodular) 70.63 78.53 84.65 86.39 89.06 92.77

Hybrid
(random) 70.99 78.59 84.72 86.46 89.34 92.93

Table 7. Comprehensive results for Linear Probe and HybridCBM
with a dynamic concept ratio of 0.5, evaluated on the test sets
across 11 datasets.

Method Number
of Shots

Ratio of Dynamic Concepts
0.2 0.4 0.5 0.6 0.8 1

Hybrid
(submodular)

1 39.0 40.9 44.0 42.2 40.6 33.8
2 42.5 41.4 40.3 43.9 38.8 35.0
4 43.1 41.8 42.3 42.7 39.9 38.5
8 44.7 43.6 43.7 42.2 41.1 38.5
16 44.1 42.3 43.6 44.6 40.4 37.7

Full 42.2 44.6 46.2 43.3 40.1 39.0

Table 8. Ablation precision@t for varying the ratio of dynamic
concepts under different number of shots.
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Figure 6. Comparison of test accuracy between HybridCBM with various static concept selections and Linear Probe across 3 datasets. The
x-axis denotes the number of labeled images.
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Figure 7. Concept Translator Pre-training. The LLM is
prompted to generate concepts, which are then combined with
COCO captions to train the Concept Translator.

B.2. Concept Translator
Following the methodologies of ClipCAP [24] and De-
CAP [19], we leverage CLIP’s shared feature space by
training a concept translator from scratch. This transla-
tor bridges the gap by converting embeddings from CLIP’s
image or text space into human-interpretable concepts.
Suppose an embedding-concept pair (e, c), where c =
{word1, word2, . . . , wordn}, the translator T learns to re-
construct c conditioned on the preceding words and the l2-
normalized image or text embedding e. The training objec-
tive is:

LRecons = → 1

n

n∑

i=1

logPT (wordi | word<i, e) (10)

As shown in Figure 7, to enable diverse and accurate
translation of vectors to concepts, we collect a large con-
cepts corpora consisting of all generated concepts by Chat-

GPT, a train-subset of MSCOCO [4] captions and the en-
tire set of concepts from ConceptNet [42]. We download
a pre-built list of all edges (assertions) from ConceptNet
5.7 and retain only those entries containing the “surface-
Text” field within the JSON structure. This field provides a
human-readable representation of the assertion as concepts.
For example: “[[Cat]] is an [[animal]].”Then, we utilize the
image encoder of CLIP to encode the image-caption pairs
of MSCOCO as embedding-caption pairs and the text en-
coder to encode the large concepts corpora as embedding-
concept pairs. The translator maps the concept embedding
e to the textual description c through c = T (e). This map-
ping enhances interpretability by providing semantic mean-
ings to the learned concepts. As noted, we train the con-
cept translator from scratch using this large corpus and a
cross-entropy loss. We utilize GPT-2 [31], configured with
a 12-layer Transformer [44]. The hidden state size is set
to 768, matching the dimensions of CLIP’s shared feature
space. We evaluate our concept translator on the MSCOCO
test split.

B.3. Prompt

Figure 8 presents the prompts used to query GPT-4 for com-
puting the Semantic Concept Validation metric. To assess
the alignment between concepts and their corresponding
classes, we prompt the LLM to act as a concept classifier.
For each concept, the LLM is asked to determine whether
the concept belongs to a specified class, responding with
”yes” if it does and ”no” otherwise. This process allows us
to measure the semantic validity of the learned concepts, as
determined by GPT-4’s responses.

Temperature is a parameter that controls the “creativity”
or randomness of the text generated. A higher temperature
(e.g., 0.7) results in more diverse and creative output, while
a lower temperature (e.g., 0.2) makes the output more de-
terministic and focused. In practice, we set the temperature
to 0 to make the model completely deterministic, always
choosing the most likely token.



Concept Retrieval

(no, yes, yes)

You are an expert binary concept classifier, capable of 
determining whether a given concept has any form of 
relationship with the provided image. For each concept: If 
it has any relationship with the image, respond with “yes”.
Otherwise, respond with "no".

You will receive k input concepts at once, separated by ‘;'. 
You should reply with the same number of answers in a 
single line, also separated by ‘;'.

• sometimes called the "black albatross”
• known as the black-browed albatross
• most abundant albatross species

Concept Semantics

You are an expert binary concept classifier. You will 
receive pairs of (concept, class), and your task is to 
determine whether the concept accurately describes or is 
related to the given class. For each pair, if the concept 
relates to the class, respond with ‘yes’; if not, respond 
with ‘no’. You will receive 5 pairs at once. Please reply 
with 5 answers in a single line, using ‘yes’ or ‘no’, 
separated by ‘,’ (e.g., yes, yes, no, no)."

Understood! Please provide the first set of 
5 (concept, class) pairs.

Figure 8. Detailed GPT-4 concept evaluation Prompts. This part describes the prompts for computing Semantic Concept Validation metric.
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Figure 9. Hybrid Concept-Concept Correlation Map for the CUB
Dataset. The x-axis and y-axis represent selected static and dy-
namic concepts, respectively, showcasing the correlation structure
across these concept types.

Dataset ω ε ϑalign
CUB-200-2011 2 0.1 0.01
FGVC-Aircraft 0.5 0.1 0.01

CIFAR-10 0.5 0.5 0.01
CIFAR-100 0.5 0.5 0.01

Other 1 0.1 0.01

Table 9. Hyperparameters used in the experiments. “Other” refers
to the remaining datasets not explicitly listed.

B.4. Full Results

The full numerical results are shown in Table 7. The test
accuracy are provided.

B.5. Case Interpretability

To evaluate the case interpretability of dynamic concepts,
we utilize a Vision-Language Model (GPT-4o), which ef-
fectively measures both the semantic quality and inter-
pretability of our model. As shown in Table 8, we evalu-
ated interpretability performance by varying both the ratio
of dynamic concepts and the number of shots on the CUB
dataset. The results demonstrate that setting the dynamic
concept ratio to 0.5—meaning the number of static and dy-
namic concepts are equal—leads to better model case inter-
pretability. Notably, even in few-shot scenarios, our model
achieves a comparable precision@t (greater than 0.4), high-
lighting the effectiveness of dynamic concepts in enhanc-
ing case-level understanding under limited data conditions.
However, increasing the dynamic concept ratio beyond 0.8
leads to a decrease in precision@t. This is probably due to
the limitations of the concept translator arising from distri-
bution bias when there are few static concepts. To address
these limitations, future work could explore advanced con-
cept translation techniques or incorporate adaptive weight-
ing between static and dynamic concepts to balance their
influence.

B.6. Hybrid Concept-Concept Correlation

We also present the Concept-Concept Correlation Map
of the hybrid concept bank in Figure 9, which is com-
posed of static and dynamic concepts. The map reveals
stronger intra-group correlations (top-left and bottom-right)
and weaker inter-group correlations (off-diagonal), high-
lighting distinct clustering and complementary relation-
ships between static and dynamic concepts.



C. Other Details
Resources. Our model is implemented using PyTorch
Lightning. We use CLIP from OpenAI’s official repository.
All experiments are run on a combination of 8 NVIDIA
RTX 3090 GPUs and 4 NVIDIA RTX 4090 GPUs.
Running Time. With CLIP’s weights frozen, we extract
image features once and reuse them across all experiments,
significantly reducing training time. Since we only opti-
mize a set of concept vectors and a linear layer, our model
is highly efficient. The additional computational overhead
of our method is minimal, with the most intensive operation
being the Sinkhorn divergence calculation, which typically
scales quadratically with the size of the concept banks due
to iterative optimization.
Hyperparameters. The proposed training scheme utilizes
five hyperparameters: ω, ε, ϑdis, ϑortho, and ϑalign. Through-
out all experiments, we fix ϑdis to 1 and ϑortho to 0.1. The
values of the remaining three hyperparameters, customized
for each dataset, are summarized in Table 9.
Optimization. We employ two Adam optimizers [16]: one
for optimizing dynamic concepts with an initial learning
rate of 1 ↑ 10→3 and another for training the sparse linear
layer with an initial learning rate of 5↑ 10→5.
Sinkhorn divergence. The Sinkhorn divergence is com-
puted as:

Sdiv,ω(µ, ϖ) = Sω(µ, ϖ)→
1

2
(Sω(µ, µ) +Sω(ϖ, ϖ)) (11)

where Sω represents the Sinkhorn distance between µ
and ϖ with regularization parameter ϱ. We use an effi-
cient GPU implementation provided by https://www.kernel-
operations.io/geomloss/ library.

https://lightning.ai/pytorch-lightning
https://lightning.ai/pytorch-lightning
https://github.com/openai/CLIP
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