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We provide additional details and experimental results in this supplementary material, which is organized as follows:
• §A More Experimental Details
• §B More Quantitative Results
• §C More Qualitative Results

A. More Experimental Details
A.1. Dataset Statistics
For each dataset, we adhere to the data splitting scheme described in [16]. In this scheme, 50% of the classes will be sampled
as ‘Old’, with the exception of CIFAR-100, which samples 80% of the classes. Following this, 50% of the images from
known classes are used to create the labelled dataset Dl, while the remaining images are allocated to the unlabelled dataset
Du. The statistics for all the datasets utilized in this work are summarized in Tab. 1.

Table 1. Overview of the dataset, including the classes in the labelled and unlabelled sets (M = |Yl|, K = |Yl ∪ Yu|) and counts of
images (|Dl|, |Du|). ‘FG’ denotes fine-grained.

Dataset FG |Dl| M |Du| K

CIFAR-10 [7] ✗ 12.5K 5 37.5K 10
CIFAR-100 [7] ✗ 20.0K 80 30.0K 100
ImageNet-100 [3] ✗ 31.9K 50 95.3K 100
CUB [19] ✓ 1.5K 100 4.5K 200
Stanford-Cars [6] ✓ 2.0K 98 6.1K 196
FGVC-Aircraft [8] ✓ 1.7K 50 5.0K 100
Herbarium19 [15] ✓ 8.9K 341 25.4K 683
Oxford-Pet [10] ✓ 0.9K 19 2.7K 37

A.2. Additional Implementation Details
Consistent with prior studies [13, 16, 21], we employ the ViT-B architecture [4] with pretrained weights from either DINO [2]
or DINOv2 [9] as our backbone network. For our proposed hyperbolic methods, we adhere to nearly all hyperparameter
settings established in [13, 16, 21] to facilitate fair comparisons with their respective baselines. The specific details are
summarized as follows: For Hyp-SimGCD and Hyp-GCD, only the last block of the backbone is fine-tuned across all
datasets. In contrast, Hyp-SelEx implements dataset-specific fine-tuning: the last two blocks are fine-tuned for CUB [19],
FGVC-Aircraft [8], and all generic datasets, while the last three blocks are fine-tuned for Stanford-Cars [6]. Regarding
method-specific hyperparameters, for Hyp-SimGCD, we set the weight ξ, which controls the weight of mean entropy loss,
to 1.0 for all the datasets. For Hyp-SelEx, we follow [13] in setting α, which regulates label smoothing, to 0.5 for FGVC-
Aircraft [8], 1.0 for CUB [19] and Stanford-Cars [6], and 0.1 for generic datasets. Additionally, the proposed parameter
αd, which balances distance-based and angle-based losses, linearly increases from 0 to its maximum value during training
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according to the formula: αd =
e∗αmax

d

200 , where e is the current training epoch. Specifically, we set αmax
d to 1 for fine-grained

and 0.5 for generic datasets.

A.3. Details of Hyp-SelEx
[13] proposes a hierarchical non-parametric method, SelEx, to address fine-grained GCD through a novel concept of self-
expertise. It begins by constructing hierarchical pseudo-labeling via a balanced semi-supervised k-means algorithm to initial-
ize clusters for known categories and then iteratively refines them by incorporating an equal number of random samples for
unseen categories to balance cluster distribution. Following it, supervised self-expertise leverages weakly-supervised pseudo
labels to group samples by capturing abstract-level similarity, whereas unsupervised self-expertise focuses on distinguishing
semantically similar hard negative samples within the same clusters to sharpen fine-grained categorization.

Its representation learning objective composes of unsupervised self-expertise loss LUSE and supervised self-expertise loss
LSSE. The unsupervised self-expertise loss, defined as LUSE = ℓce(p, t̂), calculates the binary cross entropy loss between
the logits p and an adjusted target t̂, where p is calculated based on Euclidean distance, unlike prior GCD [16] approach
that utilizes cosine similarity. [13] introduces an adjusted target matrix t̂ to recalibrate targets based on semantic similarity

between samples. Specifically, t̂ = αt + (1 − α)I, where t can be calculated using t = [
∑lgK

k=1

1(ŷk
i ̸=ŷk

j )

2k
] based on pseudo

label ŷki and ŷkj from hierarchical level k. α is the hyperparameter to control the label smoothing by identity metric I. Then,
the hierarchical supervised self-expertise loss can be denoted as:

LSSE =
1

2

(
lgK∑
k=0

Lk
s | d

2k

2k

)
, (1)

where Lk
s | d

2k
represents the supervised representation loss applied exclusively to the segment d

2k
of the embedding vector

d, corresponding to each level of the hierarchy. The final representation loss is given by Lrep = (1 − λb)LUSE + λbLSSE.
To combine SelEx with hyperbolic embeddings, we extend the hierarchical representation learning used in [13] into the
hyperbolic space, utilizing the methodology introduced in the main paper.

Following the above pace, our Hyp-SelEx utilizes hyperbolic supervised and unsupervised self-expertise, denoted as LH
SSE

and LH
USE, respectively. Given two randomly augmented views xi and x′

i for the same image in a mini-batch B, zi and
z′i represent the feature extracted from backbone network ϕ and projector ρr of these two views in the Euclidean space,
represented as zi = ρr(ϕ(xi)). As introduced in Sec.3.4 of the main paper, we employ a hybrid of distance-based and
angle-based loss functions, and hence the unsupervised self-expertise loss is represented as:

LH
USE = αdℓce(pdis, t̂) + (1− αd)ℓce(pang, t̂), (2)

where pdis is the logit calculated based on the negative hyperbolic distance, expressed as Sd(M(zi),M(z′i)), and pang is the
logit calculated based on the original distance metrics, expressed as Sa(M(zi),M(z′i)). Similarly, the hyperbolic supervised
self-expertise loss is defined as:

LH
SSE = 1

2

(∑lgK
k=0

αd(Lk
dis| d

2k
)+(1−αd)(Lk

ang| d

2k
)

2k

)
, (3)

where Lk
dis| d

2k
and Lk

ang| d
2k

denote the hyperbolic supervised distance-based and angle-based losses applied exclusively to
the segment d

2k
. The final training objective of Hyp-SelEx is formulated as:

LH
rep = (1− λH

b )LH
USE + λH

b LH
SSE. (4)

B. More Quantitative Results
B.1. GCD With Unknown Category Numbers
In line with the majority of the literature [13, 16, 20, 21], our primary experiments presented in the main paper utilize the
ground-truth category numbers. This section reports results based on estimated category numbers obtained from an off-the-
shelf method [16], illustrating the performance of our approach when ground-truth category numbers are unavailable. For
the CUB dataset, we estimate K = 231, while for Stanford-Cars, we estimate K = 230. In contrast, the actual ground-truth
counts are K = 200 and K = 196, respectively. We compare our methods with SimGCD [21], µGCD [18], and GCD [16]
in Table 2. Despite a discrepancy of approximately 15% between the ground-truth and estimated category numbers for both
CUB [19] and Stanford-Cars [6], our hyperbolic methods exhibit only a marginal decline in performance.
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Table 2. Results with the estimated number of categories, all methods use the DINO [2] pretrained weights.

CUB [19] Stanford-Cars [6]

Method All Old New All Old New
GCD [16] 47.1 55.1 44.8 35.0 56.0 24.8
SimGCD [21] 61.5 66.4 59.1 49.1 65.1 41.3
µGCD [18] 62.0 60.3 62.8 56.3 66.8 51.1
SelEx [13] 72.0 72.3 71.9 58.7 75.3 50.8
Hyp-GCD 60.2 64.6 58.0 48.1 60.2 42.2
Hyp-SimGCD 64.7 66.6 63.8 60.3 73.5 53.9
Hyp-SelEx 79.6 75.8 81.6 62.1 76.2 55.3

Table 3. Experimental results using different embedding dimensions on Hyp-GCD with DINO [2] pre-trained backbone. Results on the
CUB [19] and Stanford-Cars [6] datasets are reported.

CUB [19] Stanford-Cars [6]

dimension All Old New All Old New

64 57.6 63.6 54.6 47.2 56.7 42.6
128 59.5 65.0 56.7 48.2 60.0 42.5
256 61.0 67.0 58.0 50.8 60.9 45.8
512 61.2 65.3 59.1 50.3 59.5 45.9

B.2. Embedding Dimension
In our framework, the parametric method Hyp-SimGCD employs the original 768-dimensional embeddings from the pre-
trained ViT-B backbone. For the non-parametric methods, Hyp-GCD and Hyp-SelEx, we project the features from the
pretrained backbone into a new spherical space using an MLP projection network, followed by an exponential mapping into
hyperbolic space. In the baseline methods, GCD and SelEx, the final embedding dimension is set to 65, 536. However,
our empirical findings indicate that a significantly lower dimension can yield satisfactory performance with our hyperbolic
method, Hyp-GCD. As shown in Tab. 3, embeddings of 256 dimensions yield promising results for Hyp-GCD. This suggests
that the intrinsic properties of hyperbolic space facilitate more expressive representations at lower dimensions (e.g., 256 or
512), effectively capturing hierarchical structures and complex relationships among data points. For Hyp-SelEx, we have
chosen a dimension of 8, 092, which is also significantly lower than that of the baseline methods.

Table 4. Comparison with recent GCD methods on Herbarium19 [15] and Oxford-Pet [10].

Oxford-Pet [10] Herbarium19 [15]

Method All Old New All Old New
ORCA [1] - - - 24.6 26.5 23.7
GCD [16] 80.2 85.1 77.6 35.4 51.0 27.0
XCon [5] 86.7 91.5 84.1 - - -
OpenCon [14] - - - 39.3 58.9 28.6
DCCL [11] 88.1 88.2 88.0 - - -
SimGCD [21] 91.7 83.6 96.0 44.0 58.0 36.4
µGCD [18] - - - 45.8 61.9 37.2
InfoSieve [12] 90.7 95.2 88.4 40.3 59.0 30.2
SelEx [13] 92.5 91.9 92.8 39.6 54.9 31.3
Hyp-GCD 86.7 85.5 87.4 38.6 43.1 36.2
Hyp-SimGCD 92.2 85.7 95.7 45.1 60.1 36.9
Hyp-SelEx 92.7 91.5 93.3 40.5 49.0 36.0

B.3. Results on Additional Datasets
To further evaluate the proposed method, we conduct assessments on two additional fine-grained datasets: Oxford-Pet[10] and
Herbarium19[15]. The Oxford-Pet dataset poses a significant challenge due to its variety of cat and dog species, alongside
limited data availability. In contrast, Herbarium19 is a botanical research dataset that encompasses a wide range of plant
types, characterized by its long-tailed distribution and fine-grained categorization. The results of our experiments on these
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two datasets are summarized in Tab. 4. Our Hyp-SelEx method achieves the highest accuracy across all categories in the
Oxford-Pet dataset. Furthermore, on Herbarium19, Hyp-SelEx secures the second-best performance on all three evaluation
metrics.
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Figure 1. Visualization of attention maps of GCD [16] and our Hyp-GCD.
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C. More Qualitative Results
Fig. 1 displays the attention maps of GCD [16] and Hyp-GCD, generated from the final transformer block of the DINO
backbone [2]. These attention maps are applied across three fine-grained datasets within the SSB benchmark [17]. In this
block, a multi-head self-attention layer utilizing 12 attention heads processes the input features, resulting in 12 attention
maps at a resolution of 14 × 14. Following the methodology detailed in [2], we compute the mean value of these attention
maps and subsequently upsample them to the original image resolution for visualization. The results indicate that our method
significantly enhances focus on semantically relevant regions within the image, effectively capturing fine-grained details that
are crucial for distinguishing between categories. In contrast, the baseline approach yields more diffuse and less targeted
attention maps, often insufficiently highlighting critical areas, particularly concerning unseen categories. These findings
emphasize the robustness and generalization capability of our method in identifying meaningful visual regions, even for
novel categories, thereby demonstrating its superiority over the baseline approach.
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[9] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haz-

iza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without supervision. arXiv preprint
arXiv:2304.07193, 2023. 1

[10] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In CVPR, 2012. 1, 3
[11] Nan Pu, Zhun Zhong, and Nicu Sebe. Dynamic conceptional contrastive learning for generalized category discovery. In CVPR, 2023.

3
[12] Sarah Rastegar, Hazel Doughty, and Cees Snoek. Learn to categorize or categorize to learn? self-coding for generalized category

discovery. In NeurIPS, 2023. 3
[13] Sarah Rastegar, Mohammadreza Salehi, Yuki M Asano, Hazel Doughty, and Cees G M Snoek. Selex: Self-expertise in fine-grained

generalized category discovery. In ECCV, 2024. 1, 2, 3
[14] Yiyou Sun and Yixuan Li. Opencon: Open-world contrastive learning. TMLR, 2022. 3
[15] Kiat Chuan Tan, Yulong Liu, Barbara Ambrose, Melissa Tulig, and Serge Belongie. The herbarium challenge 2019 dataset. arXiv

preprint arXiv:1906.05372, 2019. 1, 3
[16] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Generalized category discovery. In CVPR, 2022. 1, 2, 3, 4, 5
[17] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. The semantic shift benchmark. In ICML workshop, 2022. 5
[18] Sagar Vaze, Andrea Vedaldi, and Andrew Zisserman. No representation rules them all in category discovery. In NeurIPS, 2023. 2, 3
[19] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-200-2011 dataset. 2011.

1, 2, 3
[20] Hongjun Wang, Sagar Vaze, and Kai Han. Sptnet: An efficient alternative framework for generalized category discovery with spatial

prompt tuning. In ICLR, 2024. 2
[21] Xin Wen, Bingchen Zhao, and Xiaojuan Qi. Parametric classification for generalized category discovery: A baseline study. In ICCV,

2023. 1, 2, 3

5


	More Experimental Details
	Dataset Statistics
	Additional Implementation Details
	Details of Hyp-SelEx

	More Quantitative Results
	GCD With Unknown Category Numbers
	Embedding Dimension
	Results on Additional Datasets

	More Qualitative Results

