
Improving Accuracy and Calibration via Differentiated Deep Mutual Learning

Supplementary Material

A. Definition of ECE and classwise-ECE
In this section, we adopt the notation from Section 3.

ECE is defined as the expected absolute difference be-
tween the model’s confidence and its accuracy conditioned
on confidence:

Ex∼Pdata
(|Ex′∼Pdata

(1(ŷx′ = yx′)|p̂x′ = p̂x)− p̂x|),
(12)

where E stands for expectation and 1 is the indicator func-
tion. Since we only have finite samples, ECE cannot be di-
rectly calculated using the definition provided above. There-
fore, in practical calculations, we replace the above defi-
nition with a discretized version of ECE in which the in-
terval [0, 1] is divided into M equispaced bins. Let Bi

denote the samples with confidences belonging to the i-
th bin (i.e. ( i−1

M , i
M ]). The accuracy of this bin is Ai =

1
|Bi|

∑
x∈Bi

1(ŷx = yx). The average confidence of this bin
is Ci =

1
|Bi|

∑
x∈Bi

p̂x. The discretized version of ECE is
defined as

ECE =

M∑
i=1

|Bi|
N

|Ai − Ci|, (13)

where N is the number of samples in the dataset.
Similar to ECE for confidence calibration, the classwise-

ECE [15] for classwise calibration is defined as

1

K

K∑
k=1

Ex∼Pdata
(|Ex′∼Pdata

(1(yx′ = k)|p(k)x′ = p(k)x )− p(k)x |).

(14)
The discretized version of classwise-ECE is defined as

classwise-ECE =
K∑

k=1

M∑
i=1

|Bi,k|
NK

|Ai,k − Ci,k|, (15)

where Bi,k denotes the set of samples whose predicted
probabilities of the k-th class lie in the i-th bin, Ai,k =

1
|Bi,k|

∑
x∈Bi,k

1(yx = k) and Ci,k = 1
|Bi,k|

∑
x∈Bi,k

p
(k)
x .

B. Related work
B.1. Single-model calibration methods
The current single-model calibration methods can be roughly
divided into train-time calibration methods and post-hoc
calibration methods.
Train-time calibration: Train-time calibration methods
focus on enhancing calibration during the training phase.
These methods typically involve designing loss functions or
incorporating additional regularization techniques. Entropy

Regularization (ER) [26] is an approach that maximizes the
entropy of the predicted probabilities while optimizing the
cross-entropy loss. By encouraging the model to have more
diverse and well-distributed predictions, it helps reduce over-
confidence. Label Smoothing (LS) [22, 28] optimizes the
cross-entropy loss between the predicted probabilities and
smoothed labels, instead of using hard labels. This encour-
ages the model to learn a more nuanced understanding of
the data distribution and improves calibration. Focal Loss
(FL) [21] addresses the issue of class imbalance by assigning
more importance to minority class examples. By doing so, it
improves calibration for both majority and minority classes.
Maximum Mean Calibration Error (MMCE) [16] designs
an auxiliary loss depended on the power of RKHS [7] func-
tions induced by a universal kernel. Difference between
Confidence and Accuracy (DCA) [19] proposes an auxiliary
loss that encourages the model to minimize the discrepancy
between predicted confidence and accuracy. Multi-class Dif-
ference in Confidence and Accuracy (MDCA) [10] extends
the auxiliary loss introduced by DCA to calibrate the whole
predicted probability distribution. This extension enhances
the calibration performance of neural networks by ensuring
accurate and reliable predictions across all confidence levels.
Dynamic Train-time Data Pruning (DTDP) [25] achieves
calibration by pruning low-confidence samples every few
epochs.
Post-hoc calibration: Post-hoc calibration methods are ap-
plied after the model has been trained. Temperature Scaling
(TS) [27] is a commonly used method that smooths the logits
of a deep neural network to achieve calibration. By adjusting
the temperature parameter, TS aligns the predicted probabil-
ities with the expected confidence of the model. Dirichlet
Scaling (DS) [15] extends the Beta-calibration [14] method
from binary to multi-class classification. It models the pre-
dicted probabilities using a Dirichlet distribution and learns
the parameters to calibrate the model.

B.2. Deep Ensembles
Deep Ensembles (DE) [5, 17] is a widely used model en-
semble technique in deep learning. DE creates an ensemble
by training multiple models independently with different
initializations or training data subsets. During inference,
the predictions from all models are combined, typically by
averaging their predicted probabilities.

DE has been shown to improve model performance and
calibration by leveraging the diversity among independently
trained models. Each model captures different aspects of
the data and makes slightly different predictions, leading to
more robust and well-calibrated ensemble predictions. While



DE has demonstrated effectiveness in improving model per-
formance, it comes with additional computational overhead
during inference.

C. Proof

Here we provide the proof of the proposition 1 presented in
the main text (5).
Proposition 1. Let hx(θ, ϕ) = (1 − β)fx(θ) + βgx(ϕ)
denote the ensemble predictive distribution of fx(θ) and
gx(ϕ),fx(θ) and gx(ϕ). We have

∂

∂θ
DKL(hx(θ, ϕ)||fx(θ)) = β

∂

∂θ
DKL(gx(ϕ)||fx(θ)),

(16)
where β ∈ [0, 1] is the weight of the distributions. Note that
variables with underscores do not participate in gradient
propagation.

Proof. Given a vector v, let v(k) denote the k-th dimen-
sion of v.

∂

∂θ
DKL(hx(θ, ϕ)||fx(θ)) =

∂

∂θ

K∑
k=1

(h(k)
x (θ, ϕ) log

h
(k)
x (θ, ϕ)

f
(k)
x (θ)

)

=

K∑
k=1

∂

∂θ
[h(k)

x (θ, ϕ)(log h(k)
x (θ, ϕ)− log f (k)

x (θ))].

(17)
Since θ does not participate in gradient backpropagation,

∂

∂θ
DKL(hx(θ, ϕ)||fx(θ)) = −

K∑
k=1

h(k)
x (θ, ϕ)

∂

∂θ
log f (k)

x (θ)

= −(1− β)

K∑
k=1

f (k)
x (θ)

∂

∂θ
log f (k)

x (θ)

−β

K∑
k=1

g(k)x (ϕ)
∂

∂θ
log f (k)

x (θ).

(18)
Let z(i)x (θ) denote the i-th dimension of the output logits of
the primary model with input x. According to the chain rule
of differentiation,

K∑
k=1

f (k)
x (θ)

∂

∂θ
log f (k)

x (θ) =

K∑
k=1

∂

∂θ
f (k)
x (θ)

=

K∑
i=1

K∑
k=1

∂f
(k)
x (θ)

∂z
(i)
x (θ)

∂z
(i)
x (θ)

∂θ
.

(19)
Since f

(k)
x (θ) = exp(z

(k)
x (θ))/

∑K
j=1 exp(z

(j)
x (θ)),

∂f
(k)
x (θ)

∂z
(i)
x (θ)

=

{
f
(i)
x (θ)(1− f

(i)
x (θ)), where k = i

−f
(i)
x (θ)f

(k)
x (θ), where k ̸= i

(20)

So,

K∑
k=1

∂f
(k)
x (θ)

∂z
(i)
x (θ)

= f (i)
x (θ)(1− f (i)

x (θ))−
∑
k ̸=i

f (i)
x (θ)f (k)

x (θ)

= 0.
(21)

Such that

∂

∂θ
DKL(hx(θ, ϕ)||fx(θ)) = −β

K∑
k=1

g(k)x (ϕ)
∂

∂θ
log f (k)

x (θ)

= β
∂

∂θ

K∑
k=1

g(k)x (ϕ)(log g(k)x (ϕ)− log f (k)
x (θ))

= β
∂

∂θ
DKL(gx(ϕ)||fx(θ)).

(22)
Q.E.D.

D. Tables of comparison results on CIFAR-10
and Tiny-ImageNet

See Tables S1 and S2.

E. Reliability diagrams and confidence his-
tograms of different calibration methods

Figure S1 displays the reliability diagrams and confidence
histograms of CE, FL+MDCA, and Diff-DML on the CIFAR-
100 test set. In the reliability diagrams, the red bars represent
the differences between confidence and accuracy within the
current probability interval. It can be observed from the
reliability diagrams that, compared to CE and FL+MDCA,
the length of most of the red bars in Diff-DML is shorter,
indicating that the confidence predictions output by Diff-
DML better aligned with its accuracy. From the confidence
histograms, it is evident that, compared to CE, the number
of samples with confidence higher than 90% in the predicted
distribution decreased noticeably with Diff-DML training.
Additionally, we present the average confidence and model
accuracy for all samples in the confidence histograms, in-
dicated respectively with the green dashed line and the red
dashed line. It can be observed that the red and green dashed
lines with Diff-DML training are closer, indicating better
calibration performance of Diff-DML.

F. Table for selection of auxiliary model
See Table S4.



Method
Acc(%)↑ ECE(%)↓ cw-ECE(10−3)↓

ResNet34 ResNet50 ResNet34 ResNet50 ResNet34 ResNet50

Baseline 95.03 94.91 3.23 2.95 6.66 6.42
CE 94.53 94.70 2.26 2.68 5.35 6.15

Post-hoc calibration methods

CE+TS 94.53 94.70 0.51 0.34 2.99 3.19
CE+VS 94.63 94.73 0.55 0.58 3.03 2.96
CE+DS 94.57 94.70 0.61 0.52 3.14 3.17

Regularization based calibration methods

DCA 95.22 94.91 3.28 3.22 7.01 6.68
MMCE 94.68 94.34 3.22 3.29 6.54 6.73
FL 94.88 94.31 1.21 1.07 3.36 4.06
FL+DTDP 93.59 93.88 2.46 2.35 5.72 5.69
FL+MDCA 94.75 94.16 0.87 0.68 3.04 3.72

DML-based calibration methods

DML 94.84 94.10 1.26 1.06 3.32 3.06
Diff-DML(ours) 95.39 95.20 0.68 0.90 2.43 2.60

Table S1. Different calibration methods’ accuracy, ECE, and cw-ECE on the CIFAR-10 dataset.

Method
Acc(%)↑ ECE(%)↓ cw-ECE(10−3)↓

ResNet34 ResNet50 ResNet34 ResNet50 ResNet34 ResNet50

Baseline 54.88 54.84 9.03 7.53 1.75 1.74
CE 54.73 54.38 7.63 6.14 1.71 1.64

Post-hoc calibration methods

CE+TS 54.73 54.38 1.92 1.62 1.53 1.53
CE+VS 55.34 54.02 1.46 1.52 1.52 1.43
CE+DS 52.54 49.74 7.19 10.08 2.13 2.44

Regularization based calibration methods

DCA 54.36 54.74 8.62 7.92 1.84 1.81
MMCE 54.50 54.12 6.55 4.37 1.67 1.56
FL 54.16 53.38 2.72 2.13 1.61 1.63
FL+DTDP 55.70 57.92 1.31 1.76 1.59 1.57
FL+MDCA 53.92 52.98 3.00 3.14 1.62 1.66

DML-based calibration methods

DML 56.44 56.50 3.78 2.52 1.61 1.54
Diff-DML(ours) 57.50 58.02 1.33 1.20 1.52 1.48

Table S2. Different calibration methods’ accuracy, ECE, and cw-ECE on the Tiny-ImageNet dataset.



Method
Acc(%)↑ ECE(%)↓ cw-ECE(10−3)↓

ResNet34 ResNet50 ResNet34 ResNet50 ResNet34 ResNet50

CIFAR-10

DE-3 95.79 95.63 1.19 0.77 3.64 3.01
DML 94.84 94.10 1.26 1.06 3.32 3.06
DML-2 94.52 94.66 1.17 1.06 3.31 3.27
Diff-DML(ours) 95.39 95.20 0.68 0.90 2.43 2.60
Diff-DML-2(ours) 95.29 95.23 0.51 0.63 2.48 2.48

Tiny-ImageNet

DE-3 58.78 57.60 1.95 3.32 1.58 1.59
DML 56.44 56.50 3.78 2.52 1.61 1.54
DML-2 57.46 55.72 3.24 2.33 1.58 1.56
Diff-DML(ours) 57.50 58.02 1.33 1.20 1.52 1.48
Diff-DML-2(ours) 58.60 58.08 1.08 1.10 1.49 1.53

Table S3. Comparison of DML and Diff-DML trained with more auxiliary models against DE on CIFAR-10 and Tiny-ImageNet dataset.

Figure S1. Reliability diagrams (top) and confidence histograms (bottom) of (a) CE, (b) FL+MDCA and (c) Diff-DML on CIFAR-100. In
the reliability diagrams, blue bars depict the accuracy of model-predicted samples within various confidence intervals, while red bars signify
the disparities between confidence and accuracy within the current probability interval. Ideally, a perfectly calibrated model would exhibit
all blue bars aligned on the diagonal, implying the absence of red bars. Confidence histograms illustrate confidence distribution, with the
green dashed line indicating average confidence and the red dashed line representing prediction accuracy.



g
f ResNet34 ResNet50

Acc(%)↑ ECE(%)↓ cw-ECE(10−3)↓ Acc(%)↑ ECE(%)↓ cw-ECE(10−3)↓

CIFAR-10

CNN 94.35 8.00 16.8 94.10 7.65 16.14
ResNet18 95.39 0.68 2.34 95.20 0.90 2.60
ResNet34 95.48 0.65 2.35 95.16 0.59 2.59
ResNet50 95.48 0.57 2.56 95.25 0.64 2.36

CIFAR-100

CNN 76.09 5.31 2.03 75.36 7.67 2.42
ResNet18 78.20 0.65 1.43 79.05 0.86 1.40
ResNet34 79.46 1.17 1.37 78.74 0.91 1.36
ResNet50 79.02 0.78 1.38 79.01 0.85 1.37

Table S4. Performance of Diff-DML using different backbones as auxiliary models
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