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7. Additional Experiments

7.1. Segmentation Performance

To highlight the effectiveness of KMD in balanced miss-
ing rate scenarios compared to Passion [12], the segmenta-
tion results for the WT, TC, and ET classes are presented
in Table 5, Table 6 and Table 7 respectively. The results in-
dicate that incorporating Passion into the balanced missing
rate dataset adversely impacts the performance of the base-
line models, demonstrating that Passion is effective only un-
der imbalanced missing rate conditions. In contrast, KMD
consistently performs well across both balanced and imbal-
anced missing rate settings.

7.2. Computational Comparison

We have evaluated the KMD module and Passion [12] by
the time taken per training iteration, and GPU memory us-
age. Both methods are trained with the baseline model
mmFormer [20] using a batch size of 1. To ensure a
fair comparison, we measure the average time consump-
tion over 30 iterations on a single Nvidia 3090Ti GPU. Pas-
sion [12] constantly consumes 9942 MiB of GPU memory
with training iterations 1.502s while our KMD constantly
consumes 6424 MiB of GPU memory with training itera-
tions 0.863s. In Section 5.3, we have highlighted that KMD
outperforms Passion in terms of effectiveness. From the
data above, it is evident that KMD also requires less mem-
ory and achieves faster computation speeds compared to
Passion. This demonstrates that KMD is more efficient un-
der imbalanced settings.

7.3. Ablation Studies

Hyper-parameter Hyper-parameter sensitivities are pre-
sented in Table 9. Empirically, [ω,ε, ϑ] should be set as
[1/10, 1/100, 1] to make respective losses in the same mag-
nitude. Predictions may decline by setting them as [1/10,
1/10, 1], [1/10, 1/10, 1/10], and [1, 1/10, 10]. To further
study the impact of hyper-parameters, the values of [ω, ε,
ϑ] are fine-tuned within the given range, with adjustments
of 1/3 and 1/6 of the range, respectively. From the results,
we found predictions do not decline drastically.

Similarity Measurement The cosine similarity (Dcos)
is a suitable measurement in the proposed KMD because it
measures similarities between two vectors of an inner prod-
uct space, rather than an absolute difference between two
samples. In line with this, common features will be parallel
to each other, while those specific will be orthogonal. Dif-

Table 5. Comparison of WT Dice scores when different modalities
are missing with balanced missing rates on BraTS2018. • repre-
sents present modalities. Dice scores of baselines, baselines with
Passion [12] and baselines with KMD (!) are presented. Average
means the average Dice score of all the scenarios.

Modalities WT
Flair T1 T1ce T2 [5] [12] ! [20] [12] ! [11] [12] !

• 80.52 76.04 76.94 84.09 81.79 84.07 79.47 77.68 85.09
• 67.06 63.14 78.33 72.85 67.95 81.64 83.06 64.69 87.37

• 68.42 61.88 79.49 73.37 64.45 84.14 85.97 66.07 85.92
• 82.96 78.09 80.69 85.60 83.58 83.73 84.37 80.52 86.69

• • 82.57 78.61 80.63 85.97 82.81 85.54 83.76 79.66 86.60
• • 71.97 68.26 79.46 76.93 72.84 84.96 85.98 70.99 86.42

• • 85.82 81.62 81.81 87.09 85.96 84.25 86.04 84.07 86.52
• • 83.25 77.81 81.42 86.09 83.30 84.39 85.73 79.91 85.61

• • 86.00 82.35 80.59 87.55 86.51 84.08 84.58 84.05 87.27
• • 84.94 81.12 81.14 87.94 85.99 84.83 84.32 83.49 87.13
• • • 86.06 82.64 81.78 88.36 86.65 85.01 86.10 84.31 86.79
• • • 86.53 83.00 81.86 88.16 87.11 84.39 85.95 85.06 87.10

• • • 86.34 83.36 81.22 88.74 87.38 84.95 84.30 84.59 87.61
• • • 83.61 78.80 81.73 85.96 83.31 85.22 85.94 80.36 86.88

Average 81.15 76.91 80.51 84.19 81.40 84.37 84.68 78.96 86.64

Table 6. Comparison of TC Dice scores when different modalities
are missing with balanced missing rates on BraTS2018. • repre-
sents present modalities. Dice scores of baselines, baselines with
Passion [12] and baselines with KMD (!) are presented. Average
means the average Dice score of all the scenarios.

Modalities TC
Flair T1 T1ce T2 [5] [12] ! [20] [12] ! [11] [12] !

• 64.03 63.01 68.95 67.80 63.26 76.90 72.42 62.73 78.02
• 74.53 69.48 74.07 77.32 72.92 76.66 75.70 70.78 79.44

• 58.63 57.76 74.50 64.56 56.46 78.38 79.11 59.91 77.95
• 61.95 60.25 74.35 64.08 60.60 75.98 76.72 61.56 78.67

• • 79.20 76.61 75.19 81.51 77.97 78.87 76.39 30.33 79.60
• • 77.45 74.37 74.68 79.43 76.25 79.07 79.37 74.77 79.25

• • 69.25 66.79 75.97 69.14 66.28 78.00 79.64 68.23 79.04
• • 67.48 66.01 75.59 70.63 66.41 78.23 78.91 66.85 79.07

• • 67.98 66.39 74.53 68.60 66.86 77.08 78.10 66.05 79.58
• • 78.85 77.23 75.75 80.75 77.94 78.27 77.72 77.73 79.43
• • • 80.15 78.15 75.88 81.75 79.18 79.31 80.14 78.60 79.28
• • • 70.75 68.64 75.88 70.92 68.88 78.09 79.71 68.73 79.66

• • • 79.40 78.21 75.70 81.74 78.29 79.39 77.26 77.88 79.92
• • • 80.15 77.11 77.02 81.55 78.43 79.39 79.69 76.81 79.74

Average 72.13 70.00 74.86 74.27 70.70 78.12 77.92 67.21 79.19

ferently, absolute measurement such as MSE emphasizes
the actual difference between corresponding elements of the
vectors. It is sensitive to vector magnitude but has nothing
to do with inner product space measurement. Constructing
a modality relationship with MSE would bring a negative
impact since it heavily penalizes small differences in mag-
nitude even though respective inner products are insignif-
icant. Results in Table 8 verify that MSE-based measures
that evaluate similarity with Euclidean distance do not bring
prediction improvement, while cosine similarity does.

8. Find linear operator in Multi-modal Data

In this section, following the theorems proved in [13], we
can expand the theory to multi-modality data settings.



Table 7. Comparison of ET Dice scores when different modalities
are missing with balanced missing rates on BraTS2018. • repre-
sents present modalities. Dice scores of baselines, baselines with
Passion [12] and baselines with KMD (!) are presented. Average
means the average Dice score of all the scenarios.

Modalities ET
Flair T1 T1ce T2 [5] [12] ! [20] [12] ! [11] [12] !

• 38.69 37.74 60.41 40.08 39.39 72.14 61.06 35.53 69.01
• 69.22 66.28 68.40 72.19 67.71 70.69 63.78 64.64 70.08

• 30.89 25.89 68.50 38.89 27.98 71.74 64.69 31.84 70.59
• 33.56 28.96 66.02 37.23 32.79 70.91 60.56 30.33 70.25

• • 71.40 69.21 68.26 73.11 71.29 74.97 64.53 68.36 70.53
• • 70.90 68.03 69.18 73.06 71.00 71.27 67.25 67.04 70.76

• • 38.53 35.09 69.38 40.64 36.67 71.27 66.93 36.91 70.85
• • 41.91 39.22 68.11 42.27 40.71 72.43 68.76 39.69 70.61

• • 40.90 39.01 66.08 43.65 41.64 72.03 63.15 39.24 71.06
• • 69.51 67.07 68.95 75.56 70.35 72.98 64.13 67.61 70.51
• • • 71.61 69.46 69.35 43.34 41.82 73.00 67.45 67.73 70.89
• • • 43.37 40.98 68.86 81.74 71.04 72.28 72.45 39.89 71.36

• • • 71.17 68.74 68.88 73.36 72.83 73.14 64.81 68.13 71.26
• • • 74.20 70.21 69.58 75.31 73.55 73.22 67.29 68.75 71.20

Average 54.70 51.85 67.85 57.89 54.20 72.29 65.49 51.84 70.64

Assumption 4. Consider a multi-modal dataset contain-
ing N samples, where each sample consists of M modal-
ities. Each modality m can be represented by a function
gm : M → R (or C), where m = 1, 2, . . . ,M . We as-
sume that, as the number of observations m increases, the
time-average and space-average of the data for each modal-
ity converge for almost all x ↑ M. Specifically, for each
modality m, we have:

lim
m→↑

1

m

m↓1∑

j=0

gm(xj) =

∫

M
gm(x) dµ(x), (3)

Assumption 4 holds under the condition that different
modalities from the same dataset, obtained from the same
patient, vary primarily in their signal representation. In this
context, each spatial slice within a volumetric dataset can
be interpreted as a component of spatial information, while
the sequence of these slices can be regarded as temporal in-
formation.

Theorem 5. (Linear Operator G in Koopman Invariant
Subspaces [13]) Let Y 0 = [g (x0) · · · g (xm↓1)] and
Y 1 = [g (f (x0)) · · · g (f (xm↓1))], and suppose that
Assumption 4 holds. If all modes are sufficiently excited in
the data (i.e., rank (Y 0) = n), then the matrix A = Y 1Y

†
0

almost surely converges to the matrix representation of the
linear operator G as m → ↓.

This theorem indicates that by sampling a sufficient
number of system states and under specific conditions, such
as sufficient excitation of the modes, we can approximate
an infinite-dimensional Koopman operator G using a finite-
dimensional matrix A. Based on the Assumption 4 and
Theorem 5, we have Theorem 6 for multi-modal images in
this study.

Theorem 6. For each modality m ↑ [M ], de-
fine Y (m)

0
= [gm (x0) · · · gm (xm↓1)] and Y (m)

1
=

Table 8. Segmentation results of models with (•) different losses.

Loss RFNet mmFormer M2FTrans
MSE-based Loss 79.58 69.97 62.10 70.55 83.01 71.46 70.45 74.97 81.23 76.26 68.32 75.27

Cosine Loss 80.51 74.86 67.85 74.41 84.37 78.12 72.29 78.26 86.64 79.19 70.64 78.82

Table 9. Average segmentation results of models with different
hyper-parameters under different missing rates (MR).

MR Hyper RFNet mmFormer M2FTrans Hyper RFNet mmFormer M2FTrans
ω ε ϑ ω ε ϑ

(s,m,l) 71.29 70.76 73.10 70.95 71.96 74.11
(m,s,l) 1 1/10 1/10 70.61 73.18 74.96 1/10 1/10 1 71.00 69.90 73.70
(l,m,s) 70.48 71.89 72.59 71.39 71.27 72.71
(s,m,l) 73.89 72.76 74.89 74.69 73.37 75.11
(m,s,l) 1/10 1/10 1/10 71.28 74.44 74.45 1/10 1/100 1 73.44 74.10 74.48
(l,m,s) 70.11 68.17 72.11 72.85 74.50 73.17
(s,m,l) 71.74 74.68 74.82 71.78 76.59 74.57
(m,s,l) 1/10 1/300 1 73.76 75.23 74.35 1/10 1/600 1 71.95 76.13 74.75
(l,m,s) 72.33 72.78 72.98 73.13 74.36 73.57
(s,m,l) 72.21 75.49 74.27 72.88 74.27 73.04
(m,s,l) 1/10 1/100 1/3 73.12 74.99 74.89 1/30 1/600 1 71.28 75.44 75.58
(l,m,s) 72.62 73.24 72.94 72.80 74.93 73.56

[gm (f (x0)) · · · gm (f (xm↓1))] , and suppose that As-
sumption 4 holds for each modality. If all modalities are
sufficiently excited in the data (i.e., rank

(
Y (m)

0

)
= n

for each m ↑ [M ]), then for each modality m, the ma-

trix A(m) = Y (m)

1

(
Y (m)

0

)†
almost surely converges to

the matrix form of the linear operator Gm as m → ↓.

Proof. For a single modality m, the given data Y (m)

0
and

Y (m)

1
correspond to the setup in Theorem 5. The func-

tion gm(·) in Theorem 6 plays the role of g(·) in Theo-
rem 5, and the data matrices Y (m)

0
and Y (m)

1
in Theorem 6

are analogous to Y 0 and Y 1 in Theorem 5. Since As-
sumption 4 holds for each modality m, and the rank con-
dition rank

(
Y (m)

0

)
= n is satisfied, Theorem 5 guaran-

tees that the matrix A(m) = Y (m)

1

(
Y (m)

0

)†
almost surely

converges to the matrix form of the linear operator Gm as
m → ↓. Since Theorem 5 applies independently to each
modality m, the same convergence result holds for each
A(m): almost surely converges to the matrix form of the
linear operator Gm as m → ↓.

Theorem 6 is proven by directly applying Theorem 5 to
each modality m. The convergence property for the matrix
A(m) in Theorem 6 follows from the established conver-
gence in Theorem 5.
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