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7. Additional Experiments

7.1. Segmentation Performance

To highlight the effectiveness of KMD in balanced miss-
ing rate scenarios compared to Passion [12], the segmenta-
tion results for the WT, TC, and ET classes are presented
in Table 5, Table 6 and Table 7 respectively. The results in-
dicate that incorporating Passion into the balanced missing
rate dataset adversely impacts the performance of the base-
line models, demonstrating that Passion is effective only un-
der imbalanced missing rate conditions. In contrast, KMD
consistently performs well across both balanced and imbal-
anced missing rate settings.

7.2. Computational Comparison

We have evaluated the KMD module and Passion [12] by
the time taken per training iteration, and GPU memory us-
age. Both methods are trained with the baseline model
mmFormer [20] using a batch size of 1. To ensure a
fair comparison, we measure the average time consump-
tion over 30 iterations on a single Nvidia 3090Ti GPU. Pas-
sion [12] constantly consumes 9942 MiB of GPU memory
with training iterations 1.502s while our KMD constantly
consumes 6424 MiB of GPU memory with training itera-
tions 0.863s. In Section 5.3, we have highlighted that KMD
outperforms Passion in terms of effectiveness. From the
data above, it is evident that KMD also requires less mem-
ory and achieves faster computation speeds compared to
Passion. This demonstrates that KMD is more efficient un-
der imbalanced settings.

7.3. Ablation Studies

Hyper-parameter Hyper-parameter sensitivities are pre-
sented in Table 9. Empirically, [a, 3,~] should be set as
[1/10,1/100, 1] to make respective losses in the same mag-
nitude. Predictions may decline by setting them as [1/10,
1/10, 1], [1/10, 1/10, 1/10], and [1, 1/10, 10]. To further
study the impact of hyper-parameters, the values of [«, 3,
v] are fine-tuned within the given range, with adjustments
of 1/3 and 1/6 of the range, respectively. From the results,
we found predictions do not decline drastically.

Similarity Measurement The cosine similarity (D,s)
is a suitable measurement in the proposed KMD because it
measures similarities between two vectors of an inner prod-
uct space, rather than an absolute difference between two
samples. In line with this, common features will be parallel
to each other, while those specific will be orthogonal. Dif-

Table 5. Comparison of WT Dice scores when different modalities
are missing with balanced missing rates on BraTS2018. e repre-
sents present modalities. Dice scores of baselines, baselines with
Passion [12] and baselines with KMD (A) are presented. Average
means the average Dice score of all the scenarios.

Modalities WT

Flair TI  Tlce T2 [51 [12] A [20] [12] A [11] [12] A
. 80.52 76.04 7694 | 84.09 81.79 84.07 | 79.47 77.68 85.09
. 67.06 63.14 7833 | 72.85 6795 81.64 | 83.06 64.69 8737
. 6842 61.88 79.49 | 73.37 6445 84.14 | 8597 66.07 8592
. 8296 78.09 80.69 | 85.60 83.58 8373 | 84.37 80.52 86.69
. . 8257 7861 80.63 | 8597 8281 8554 | 83.76 79.66 86.60
. . 7197 6826 79.46 | 7693 72.84 8496 | 8598 70.99 86.42
. . 8582 81.62 8181 | 87.09 8596 84.25 | 86.04 84.07 86.52
. e | 8325 7781 8142 | 86.09 8330 8439 | 8573 7991 8561
o . 86.00 8235 80.59 | 87.55 86.51 84.08 | 84.58 84.05 87.27
. . 8494 81.12 81.14 | 87.94 8599 8483 | 8432 8349 87.13
o . . 86.06 82.64 81.78 | 88.36 86.65 8501 | 86.10 84.31 86.79
° . . 86.53 83.00 81.86 | 88.16 87.11 8439 | 8595 85.06 87.10
. . . 86.34 8336 8122 | 88.74 8738 8495 | 8430 8459 8761
° ° ° 83.61 78.80 81.73 | 8596 8331 8522 | 8594 80.36 86.88
Average 81.15 7691 8051 | 8419 8140 84.37 | 84.68 7896 86.64

Table 6. Comparison of TC Dice scores when different modalities
are missing with balanced missing rates on BraTS2018. e repre-
sents present modalities. Dice scores of baselines, baselines with
Passion [12] and baselines with KMD (A) are presented. Average
means the average Dice score of all the scenarios.

Modalities TC

Flair Tl1 Tlce T2 [5] [12] A [20] [12] A [11] [12] A
e | 6403 63.01 6895 | 67.80 6326 7690 | 72.42 6273 78.02
. 7453 69.48 7407 | 7732 7292 76.66 | 75.70 70.78  79.44
. 58.63 5776 7450 | 6456 5646 78.38 | 79.11 5991 7795
. 6195 6025 7435 | 6408 60.60 7598 | 76.72 61.56 78.67
. ® | 7920 76.61 7519 | 81.51 77.97 7887 | 7639 3033  79.60
. . 7745 7437 7468 | 7943 7625 79.07 | 79.37 7471 79.25
. . 69.25 6679 7597 | 69.14 6628 78.00 | 79.64 68.23  79.04
. e | 6748 66.01 7559 | 70.63 6641 7823 | 7891 66.85 79.07
. e | 6798 6639 7453 | 68.60 66.86 77.08 | 78.10 66.05 79.58
. . 7885 7723 7575 | 80.75 7794 7827 | 7772 7173  79.43
. . e | 80.15 7815 7588 | 81.75 79.18 79.31 | 80.14 78.60 79.28
. . e | 7075 68.64 7588 | 70.92 68.88 78.09 | 79.71 68.73  79.66
. . e | 7940 7821 7570 | 81.74 7829 79.39 | 77.26 77.88 79.92
. . e | 80.15 77.11 77.02 | 81.55 7843 79.39 | 79.69 76.81 79.74
Average 7213 7000 7486 | 7427 7070 7812 | 77.92  67.21 79.19

ferently, absolute measurement such as MSE emphasizes
the actual difference between corresponding elements of the
vectors. It is sensitive to vector magnitude but has nothing
to do with inner product space measurement. Constructing
a modality relationship with MSE would bring a negative
impact since it heavily penalizes small differences in mag-
nitude even though respective inner products are insignif-
icant. Results in Table 8 verify that MSE-based measures
that evaluate similarity with Euclidean distance do not bring
prediction improvement, while cosine similarity does.

8. Find linear operator in Multi-modal Data

In this section, following the theorems proved in [13], we
can expand the theory to multi-modality data settings.



Table 7. Comparison of ET Dice scores when different modalities
are missing with balanced missing rates on BraTS2018. e repre-
sents present modalities. Dice scores of baselines, baselines with
Passion [12] and baselines with KMD (A) are presented. Average
means the average Dice score of all the scenarios.

Modalities ET

Flair Tl Tlce T2 5] [12] A [20] [12] A [11] [12] A
e | 38.69 3774 6041 | 40.08 3939 7214 | 61.06 3553  69.01
3 6922 6628 6840 | 72.19 67.71 70.69 | 63.78 64.64  70.08
3 30.89 2589 6850 | 3889 2798 71.74 | 64.69 31.84 70.59
. 3356 2896 66.02 | 3723 3279 7091 | 60.56 3033 7025
. e | 7140 69.21 6826 | 73.11 7129 7497 | 6453 6836  70.53
. . 7090 68.03 69.18 | 73.06 71.00 71.27 | 67.25 67.04 70.76
. . 3853 3509 69.38 | 40.64 36.67 71.27 | 66.93 3691 70.85
3 e | 4191 3922 68.11 | 4227 4071 7243 | 6876 39.69  70.61
. e | 4090 39.01 66.08 | 43.65 41.64 7203 | 63.15 3924 7106
. . 69.51 67.07 6895 | 7556 7035 7298 | 64.13 67.61 70.51
. 3 3 71.61  69.46 69.35 | 43.34 41.82 73.00 | 6745 67.73 70.89
. 3 e | 4337 4098 6886 | 81.74 71.04 7228 | 7245 3989 7136
3 3 e | 71.17 6874 6888 | 7336 7283 73.14 | 6481 68.13 7126
. ° e | 7420 7021 69.58 | 7531 7355 7322 | 67.29 6875 71.20

Average 5470 51.85 67.85 | 57.89 5420 72.29 | 6549 51.84 70.64

Assumption 4. Consider a multi-modal dataset contain-
ing N samples, where each sample consists of M modal-
ities. Each modality m can be represented by a function
gm : M — R (or C), where m = 1,2,..., M. We as-
sume that, as the number of observations m increases, the
time-average and space-average of the data for each modal-
ity converge for almost all x € M. Specifically, for each
modality m, we have:

tim " () = /M (@) du(z), 3

Assumption 4 holds under the condition that different
modalities from the same dataset, obtained from the same
patient, vary primarily in their signal representation. In this
context, each spatial slice within a volumetric dataset can
be interpreted as a component of spatial information, while
the sequence of these slices can be regarded as temporal in-
formation.

Theorem 5. (Linear Operator G in Koopman Invariant
Subspaces [13]) Let Yo = [g(xo) -+ g (®m—1)] and
Y1 = [g(f@0)) -+ g(F @n-1))}, and suppose thar
Assumption 4 holds. If all modes are sufficiently excited in
the data (i.e., rank (Y o) = n), then the matrix A = YlY(T)
almost surely converges to the matrix representation of the
linear operator G as m — 0.

This theorem indicates that by sampling a sufficient
number of system states and under specific conditions, such
as sufficient excitation of the modes, we can approximate
an infinite-dimensional Koopman operator G using a finite-
dimensional matrix A. Based on the Assumption 4 and
Theorem 5, we have Theorem 6 for multi-modal images in
this study.

Theorem 6. For each modality m € [M], de-
fine Y§" = lg,, (@0) -+ g (@1)] and Y7 =

Table 8. Segmentation results of models with (e) different losses.

Loss RFNet mmFormer M2FTrans
MSE-based Loss | 79.58 69.97 62.10 70.55(83.01 71.46 70.45 74.97|81.23 76.26 68.32 75.27
Cosine Loss | 80.51 74.86 67.85 74.41 [84.37 78.12 7229 78.26 [86.64 79.19 70.64 78.82

Table 9. Average segmentation results of models with different
hyper-parameters under different missing rates (MR).

MR Hyper RFNet mmFormer M2FTrans Hyper RFNet mmFormer M2FTrans
a B~ a B~
mD 7129 7076 73.10 7095 7196 Ta Il
msh| 1 110 1710|7061  73.18 7496 |10 1710 1[71.00  69.90 73.70
(Im.s) 7048 7189 72.59 7139 7127 7271
m.D 7389 7276 7489 7469 71337 75.11
(ms)| 1710 1710 1/10| 7128 74.44 7445 1710 17100 1| 7344 7410 7448
(Im.s) 7001 6817 72.11 7285 7450 73.17
5mD) 7174 7468 7482 7178 7659 25
(ms)| 1710 17300 1 | 7376 7523 7435|1710 1/600 1| 7195  76.13 7475
(I,m.s) 7233 7278 72.98 7313 7436 73.57
) 7221 7549 7427 7288 7427 73.04
(ms))| 1710 17100 173 | 73.12 74.99 7489|1730 1/600 1| 7128 7544 75.58
(m.s) 7262 7324 72.94 7280 7493 73.56

(9 (f (®0)) -+ gy (f (®m—1))], and suppose that As-
sumption 4 holds for each modality. If all modalities are

sufficiently excited in the data (i.e., rank (Yém)) =n
for each m € [M]), then for each modality m, the ma-
trix A ng) (Yém)

the matrix form of the linear operator G, as m — oco.

almost surely converges to

Proof. For a single modality m, the given data Yém) and

ng) correspond to the setup in Theorem 5. The func-
tion g,,(-) in Theorem 6 plays the role of g(-) in Theo-
rem 5, and the data matrices Y™ and Y™ in Theorem 6
are analogous to Yy and Y'; in Theorem 5. Since As-
sumption 4 holds for each modality m, and the rank con-

dition rank (Yém)> = n is satisfied, Theorem 5 guaran-

+
tees that the matrix A™ = ng) (Y(()m) almost surely

converges to the matrix form of the linear operator G, as
m — oo. Since Theorem 5 applies independently to each
modality m, the same convergence result holds for each
A™): almost surely converges to the matrix form of the
linear operator G, as m — 0. O

Theorem 6 is proven by directly applying Theorem 5 to
each modality m. The convergence property for the matrix
A in Theorem 6 follows from the established conver-
gence in Theorem 5.
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