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In Supp. A, we first elaborate on the implementation de-
tails of other methods to establish a basis for comparison.
We then provide a detailed implementation of our method,
including loss function, text parsing, and text encoder. Next,
in Supp. B, we compare the computational costs of the differ-
ent methods. In Supp. ??, we compare the proposed method
with other graph-based SOR approaches. In Supp. C, we
ablate the effects of the number of graph convolution layers,
the number of rank decoder layers, sentence features from
different sources, and so on. Finally, in Supp. D, we present
additional visual results.

A. Implementation Details
Implementations of Other Methods. For the salient in-
stance/object detection methods [8, 19], we use the average
saliency intensity to calculate the saliency ranks, following
the method described in [13]. For instance segmentation
methods [3, 9, 24], we modify the output layers to corre-
spond with rank numbers from saliency ranking datasets and
reinterpret category labels as rank labels.

For the large vision-and-language model-based method
GiT [23], we adopt their instance segmentation setting,
which adapts the window-based ViT [7, 14] to predict in-
stance masks as a 1D sequence in raster order using an
auto-regressive decoding paradigm. The number of output
classes is adjusted according to the ranks of the two standard
ranking datasets. A response example for instance segmen-
tation in a sub-region of the input image is formatted as:
{⟨image⟩⟨local feature⟩“instance segmentation” : ⟨c⟩⟨x1⟩
⟨y1⟩ . . . ⟨xn⟩⟨yn⟩}, where ⟨c⟩ is the class (rank) label, and
⟨x1⟩⟨y1⟩ . . . ⟨xn⟩⟨yn⟩ represent the n offsets of the predicted
mask in the corresponding sub-region.

For the language-guided segmentation method (i.e., X-
Decoder [28]), we input the same detailed text descriptions
as ours, generated by [4] and capped at 256 tokens. After ex-
tracting visual and language features using Focal-T [27] for
images and BERT [6] for texts, the X-Decoder concatenates
the language features with visual query embeddings and
feeds them into transformer decoder layers for cross-modal
feature fusion. The output layer of the X-Decoder is mod-

ified to meet the specific requirements of the two saliency
ranking benchmarks.

For a fair comparison, backbone of instance segmentation
methods [3, 9, 23, 24] and language-guided segmentation
method [28] are also pretrained on MS-COCO [15].
More Implementation Details. We employ both binary
cross-entropy loss and dice loss [16] for supervising salient
instance mask predictions. They are denoted as Lmask =
λceLce + λdiceLdice, where the coefficients λce and λdice

are both set to 5.0. For the rank predictions, we utilize rank-
ing loss [18], denoted as Lrank. The overall training loss is
therefore: L = Lmask+λrankLrank, where λrank is empir-
ically set as 2.0. Our framework is based on Detectron2 [25]
and requires approximately one day to converge on eight
A100 GPUs.
Text Parsing. To get the object and relation phrases, we use
spaCy [1] to extract all noun and relation phrases from input
descriptions. Subsequently, we filter out the pronouns (e.g.,
she, he, it), atmosphere words (e.g., a soft or cozy atmo-
sphere), and non-instance phrases (e.g., game, environment,
street, city). If noun or relation phrases repeat, we retain
only the first occurrence of each phrase.
Text Encoder. For the input description, we first tokenize
it into 256 tokens. We truncate the tokenized text to 256
tokens if it exceeds this length, or pad it to meet this size
if it is shorter. Additionally, we insert two special tokens:
a [CLS] token at the start and a [SEP] token at the end of
the description. We then feed this tokenized description into
BERT [6] (“bert-base-uncased”) to obtain the correspond-
ing output word embeddings. The output from the [CLS]
token, designed to capture the context of the entire input
description, is used as the sentence features for the input
textual description. In the training process, we freeze the
text encoder to stabilize the optimization process.

B. Computational Analysis
Computational Analysis of Different Methods. In Ta-
ble A1, we compare the FLOPs, parameters, inference speed,
and performances of different methods on ASSR test set [20].
While utilizing LVLM-generated descriptions for SOR, our
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Table A1. Comparisons of FLOPs, Parameters, and Runtime of different methods. ‘-’ denotes the results are not available. FLOPs are
calculated for an input size of 1024×1024. Inference speed is tested on a single 4090 GPU.

Methods Reference Backbone FLOPs ↓ Parameters ↓ Runtime ↓ SA-SOR ↑ SOR ↑ MAE ↓

GiT [23] [ECCV’24] GiT-B - 158.74M 1398ms 0.541 0.854 0.101
OCOR [22] [CVPR’22] Swin-L 901.17G 401.67M 115ms 0.594 0.875 0.101
QAGNet [5] [CVPR’24] Swin-L 1007.79G 218.81M 289ms 0.772 0.867 0.052
DSGNN [26] [CVPR’24] Swin-L 703.15G 250.21M 325ms 0.765 0.860 0.051
PoseSOR [11] [ECCV’24] Swin-L 1524.36G 220.13M 581ms 0.664 0.854 0.077
Ours - Swin-L 1559.56G 327.03M 453ms 0.787 0.895 0.049

method performs better at the cost of acceptable computa-
tional overheads. Our approach (including the LVLM gener-
ation) processes an image in 453 ms, outperforming existing
methods with a moderate inference cost.

Compared to GiT [23], which predicts masks and ranks
as a 1D sequence in a time-consuming autoregressive man-
ner, the proposed (Swin-L-based) method leverages LVLM-
generated descriptions to achieve significantly better perfor-
mance (SA-SOR: 44.18%; SOR: 4.92%; MAE: 54.46%)
while being approximately 12× faster. Notably, despite
processing text input, our approach achieves 1.6× faster in-
ference speeds than DSGNN [26] while delivering better
performance, with a 4.19% improvement in the SOR metric.
Computation Analysis of Different LVLMs. As our
method uses the LVLM-generated descriptions to assist the
SOR task, we report the computational costs of different
LVLMs in Table A2. We use InstuctBLIP [9] as the default
LVLM, as it is very efficient, and our method is robust to
descriptions generated by different LVLMs (Table 4 in our
paper).

Table A2. Computation costs of different LVLMs.

LVLMs LLaVa [17] OPERA [12] GPT-4V [2] InstructBLIP [4]

Parameters ↓ 3.81G 7.91G 1.7T 7.91G
Runtime ↓ 1.89s 12.21s ≈7s 0.33s

Computation Analysis of Different Components. We fur-
ther report the computational costs of different components
of our model based on the ResNet-50 backbone in Table A3.
Although introducing the TGVM and TAVR modules in-
creases the computational overheads, they are essential for
enhancing the performance of our model.

Table A3. Computation costs of each component in our method
(using ResNet-50 as the backbone).

Settings TGVM TAVR FLOPs ↓ Parameters ↓ SA-SOR ↑
I 77.52G 153.50M 0.687

IV ✓ 102.72G 154.29M 0.713
VIII ✓ ✓ 139.44G 155.41M 0.733

C. Additional Ablations
Number of Graph Convolution Layers. In Table A4, we
study the effect of varying the number of graph convolution
layers. The results show that increasing the number of layers
(e.g., from 1 to 2) enhances the model’s reasoning ability, but
adding too many layers (e.g., 3) does not boost all metrics
(with SOR being higher but SA-SOR and MAE worse). This
may be attributed to the lengthy descriptions generated by
LVLMs, where extra layers may over-complicate the model’s
inference, introducing noise that negatively impacts the per-
formance. Thus, we choose two graph convolution layers
for our model.

Table A4. Ablation study of the number of graph convolution layers
used in TAVR.

Layers SA-SOR ↑ SOR ↑ MAE ↓
1 0.714 0.876 0.066
2 0.733 0.882 0.065
3 0.731 0.883 0.065

Number of Rank Decoder Layers. Table A5 illustrates the
impact of varying the number of rank decoder layers. The
results show that using three layers yields the best perfor-
mance across three metrics, surpassing both the single-layer
and six-layer setups. Thus, we have selected three layers as
the optimal configuration for our rank decoder.

Table A5. Ablation study of number of rank decoder layers.

Layers SA-SOR ↑ SOR ↑ MAE ↓
1 0.716 0.865 0.068
3 0.733 0.882 0.065
6 0.728 0.880 0.066

Different Sentence Features from Text Encoder. In Ta-
ble A6, we explore a variant where sentence features Ls

are derived by averaging features from individual word to-
kens instead of using the [CLS] token, denoted as [CLS] →
Words. The results indicate that representing sentence fea-
tures with pooled word embeddings adversely affects perfor-
mance. This validates that the [CLS] token more effectively



captures the global context of the entire input textual descrip-
tion.

Table A6. Ablation study of different sentence features.

Sentence Features SA-SOR ↑ SOR ↑ MAE ↓

[CLS] 0.733 0.882 0.065
Words 0.729 0.880 0.066

Discussion on TAVR. We visualize the activation map for
different relation phrases of TAVR in Fig. A1, which shows
that TAVR can locate the corresponding objects for different
relation phrases, facilitating the SOR task.

Input Prediction

Description: “A black cat is sitting on top of a red suitcase, which is placed 
on the floor. There is a backpack next to the suitcase. ...”
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Figure A1. Visualization of the activation map for different relation
phrases of TAVR.

Ablation Study of Wrong Description. To further test
our model, we deliberately feed completely wrong descrip-
tions (using descriptions generated for other images) with
the target images to our model. For example, we randomly
sample one description and treat it as a completely wrong
description for all target images. The results (denoted as
“Wrong Descriptions”) are shown in Table A7, which indi-
cates that using completely wrong descriptions indeed harms
the model’s performance. This is expected, as the erroneous
text describes another image, which is unrelated to the cor-
responding target images. However, since visual features
are still used in our approach, our model can utilize visual
features to aid in ranking and mitigate the negative effects
of incorrect input descriptions, thus achieving comparable
performance to other methods.

Table A7. Ablation study of different descriptions.

Captions SA-SOR ↑ SOR ↑ MAE ↓
Wrong Descriptions 0.668 0.847 0.075

Ours 0.733 0.882 0.065

Visual Comparisons of Introducing Language Descrip-
tion. Fig. A2 illustrates the effectiveness of incorporating
language descriptions into saliency ranking. The second col-
umn shows the model’s results without descriptions, where
both TGVM and TAVR modules are removed, and we di-
rectly input the multiscale visual features into the transformer
decoder to generate the ranking predictions. The visual re-
sults demonstrate that our approach effectively leverages

the rich semantic information (e.g., salient objects and their
relations) of textual descriptions to enhance saliency rank-
ing. For example, in the first row, the model without using
the description erroneously highlights only the most salient
object (‘the cat’), but our method ranks ‘the cat’ as the most
salient and ‘a chair’ as the second simultaneously, align-
ing with their orders in the description. The second row
presents a more complex scenario. Unlike the model without
descriptions, which only identifies the most salient object,
our approach accurately recognizes ‘a woman’ and ‘a surf-
board’ as the most and second salient objects, respectively,
before shifting focus to ‘a small dog’ and ‘other surfboards’.
This capability stems from our method’s effectiveness in
extracting valuable information from the multimodal graph,
utilizing implicit orders and relationships (e.g., ‘standing on’
and ‘sitting on’) detailed in the textual description.

D. More Visual Results
We present the comparison of our method against the
eleven top-performing methods listed in Table 1, as
shown in Fig. A3 – A8. These methods include
Mask2Former [3], GiT [23], X-Decoder [28], ASSR [20],
IRSR [18], OCOR [22], PSR [21], SeqRank [10], QAG-
Net [5], DSGNN [26], and PoseSOR [11].

Fig. A3 – A5 demonstrate that our model effectively
ranks salient objects based on their implicit orders in the
description. For instance, the first row of Fig. A3 shows our
model prioritizing ‘a man’ and ‘a wooden bench’ over ‘a
boat in the water’, following the implicit narrative sequence
in the description. Similarly, in first row of Fig. A4, the
model identifies ‘a man’ and ‘a magazine with a picture of
a woman on the cover’ as the most and second-most salient
objects, respectively, with ‘a refrigerator’ ranked third. Even
when background elements such as ‘a sink’ and ‘a clock’ are
present, our approach effectively extracts useful information
from the language description and suppresses these distrac-
tions. These results further validate that our method can
decipher the implicit orders of salient objects from textual
descriptions while effectively minimizing background noise.

Furthermore, our method exhibits robustness in captur-
ing saliency by effectively deciphering positional context
and object relationships, even when the order in the lan-
guage description does not precisely align with the ground
truth, which is demonstrated in Fig. A6 – A8. For example,
the third row of Fig. A6 initially describes ‘a woman’, ‘a
baby’ then ‘a white stuffed teddy bear’. But, according to
the ground truth, ‘a baby’ should be the most salient. De-
spite this, our approach successfully utilizes relationships
(e.g., ‘holding’ and ‘being enjoyed while held’) and the en-
tity phrases to construct a multimodal graph, enhancing the
model’s reasoning for the salient objects’ ranking orders. In
the last row of Fig. A7, our method effectively learns the
positional context from the multimodal graph by integrating



Input Image w/o Description Ours Ground Truth

Description: “An adorable orange and white cat is resting on a blue cushion placed on a white chair. The cat appears to be relaxed and comfortable as it

lounges on the cushion, possibly enjoying the sunny outdoor setting. The chair is positioned in front of a potted plant, which adds a touch of greenery to the

scene ...”

Description: “A woman is standing on a surfboard in the middle of a body of water, holding a paddle. She is accompanied by a small dog sitting on the
surfboard next to her. Both the woman and the dog appear to be enjoying their time on the water. There are several other surfboards visible in the
background, suggesting that there may be other people out on the water ...”

Figure A2. The effectiveness of introducing language description for saliency ranking.

semantic textual information with visual features.
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Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A man is sitting on a wooden bench near a body of water, possibly the ocean. He is wearing a plaid shirt and appears to be enjoying the view.

The scene also includes a boat in the water and a crane in the background, ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A man standing on a grassy field, flying a colorful kite in the sky. He is wearing a white shirt and appears to be enjoying the outdoor activity.

In the background, there is a bridge spanning across the landscape, ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “Two men are playing a game of tennis on a tennis court. One of them is holding a tennis racket, ready to hit the ball that is coming towards

him. The other man is standing nearby, possibly waiting for his turn to hit the ball ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A woman wearing a hat and sunglasses is standing on a sidewalk next to a banana tree. She appears to be pointing at something in the

distance, possibly enjoying the scenery around her. The banana tree is located towards ...”

high low
Figure A3. Qualitative comparison of our method with eleven best-performing methods in Table 1.



Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A man is standing in a kitchen, holding a magazine with a picture of a woman on the cover. He is wearing a black shirt and appears to be

reading the magazine. The kitchen has a refrigerator, a sink, and a clock on the wall ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A black and white cat is standing on top of a white toilet in a bathroom. The cat appears to be enjoying its time on the toilet, as it seems to be

licking its paw ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A woman is standing next to a small elephant in a dirt area. The elephant is reaching out its trunk towards the woman, who appears to be

petting it. The elephant’s trunk is touching the woman’s hand, and she is smiling ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A young woman wearing a red jacket is biting into a long hot dog covered in mustard and ketchup. The hot dog appears to be quite large,

taking up a significant portion of the woman’s mouth. ...”

high low
Figure A4. Qualitative comparison of our method with eleven best-performing methods in Table 1.



Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A man and a woman are standing together, holding wine glasses and posing for a picture. The man is wearing glasses and a scarf, while the

woman is wearing a black shirt. They are both smiling ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “ A black cat is sitting on top of a red suitcase, which is placed on the floor. The cat appears to be looking at the camera. There is a backpack
next to the suitcase. The scene is set in a room with a wooden floor. ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A man and a woman are standing together, holding wine glasses, and posing for a picture. They are surrounded by several wine bottles. The

man is wearing a striped shirt, and the woman is wearing a blue dress ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A small black dog is standing on a wooden floor next to a white plate containing broccoli. The dog seems to be curious about the broccoli and

is staring intently at it. There are a bowl on the left side of the image ...”

high low
Figure A5. Qualitative comparison of our method with eleven best-performing methods in Table 1.



Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A man and a woman are sitting on a couch, enjoying pizza together. The man is holding a slice of pizza in his hand, while the woman is also

holding a slice. There are two pizza slices visible in the scene ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A young boy and girl are sitting on a couch, playing a video game together. They are holding Wii controllers in their hands, fully engaged in

the game. The room has a cozy atmosphere, ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A woman is sitting in a chair and holding a baby close to her chest. The baby is wearing a pink outfit and appears to

be enjoying being held by the woman. The woman is also holding a white stuffed teddy bear in her other hand. ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “Two young men are sitting on a couch, playing a video game together. One of the men is holding a Wii remote, while the other is holding a

Nintendo Wii controller. The couch is positioned against a wall, ...”

high low
Figure A6. Qualitative comparison of our method with eleven best-performing methods in Table 1.



Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A group of people gathered in a living room, playing a video game together. A man is holding a Wii remote, and playing a video game. Other
people are sitting on a couch, watching the man play. The living room is furnished ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A group of people gathered in a living room, playing a video game together. Two adults and two children are sitting on the floor, all holding

Nintendo Wii controllers. They appear to be enjoying the game ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “ A woman and two young boys are playing with a kite in a park. The woman is holding the kite while the boys are standing next to her,

looking up at the kite as it flies in the air. It appears to be a fun and enjoyable moment ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A group of three women are standing in a kitchen, preparing food and drinks. Two of the women are on the left side of the kitchen, while the
third woman is on the right side. They appear to be engrossed in their tasks, ...”
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Figure A7. Qualitative comparison of our method with eleven best-performing methods in Table 1.



Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “Two men are sitting at a desk, both wearing black shirts and ties. They are working on their laptops. One of the laptops is

positioned closer to the left side of the desk, while the other one is situated on the right side ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A man is sitting on a couch using a laptop computer. A cat is resting on his lap, appearing to be sleeping. The man is wearing a white shirt

and is typing on the laptop. The scene is cozy and relaxed, with the man and the cat ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A young man is standing in a room, playing a video game on a Nintendo Wii console. He is holding a Wii remote, and the television screen

displays the game he is playing. The room also features a couch, a chair, ...”

Image Mask2Former [3] GiT [23] X-Decoder [28] ASSR [20] IRSR [18] PSR [21]

OCOR [22] SeqRank [10] QAGNet [5] DSGNN [26] PoseSOR [11] Ours GT

Description: “A woman is holding a birthday cake with lit candles, and a man is holding a baby. The woman is wearing a black dress and is smiling while

presenting the cake. There are a TV on the wall ...”
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Figure A8. Qualitative comparison of our method with eleven best-performing methods in Table 1.


	. Implementation Details
	. Computational Analysis
	. Additional Ablations
	. More Visual Results

