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7. Preliminary
In the following, five more tensor operations [19], including
bcirc, bvec, bvfold, bdiag and bdfold are introduced. In
specific, bcirc is to form the block circular matrix as

bcirc(A) =


A(1) A(N3) · · · A(2)

A(2) A(N1) · · · A(3)

...
...

. . .
...

A(N3) A(N3−1) · · · A(1)

 (22)

bvec and bvfold are the block vectorizing and its opposite
operation, i.e.

bvec(A) =


A(1)

A(2)

...
A(N3)

 , bvfold(bvec(A)) = A. (23)

bdiag and bdfold are the block diagonal matrix and its op-
posite operation, i.e.

bdiag(A) =

A
(1)

. . .
A(N3)

 , bdfold(bdiag(A)) = A.

(24)

Nevertheless, the tensor unfolding operation along l-th
mode is defined as transforming A to a matrix whose
columns are mode-l fibers, i.e. unfoldl(A) = A(l) ∈
RNl×

∏
l′ ̸=l Nl′ , while the opposite folding operation as

foldl(A(l)) = A.
To narrow the gap between Definition 4 and Alg. 1, the

following derivations are introduced. Specifically, accord-
ing to [18, 50], Eq. (3) can be written as

A =

min(N1,N2)∑
i=1

U(:, i, :) ∗ S(i, i, :) ∗ V(:, i, :)⊤. (25)

By considering the t-SVD in Fourier domain, the above de-
composition is always transformed to

A
(1)
f

. . .
A

(N3)
f

 =


U

(1)
f

. . .
U

(N3)
f

 ·


S
(1)
f

. . .
S
(N3)
f

 ·


V

(1)
f

. . .
V

(N3)
f


(26)

in which ”·”refers to the matrix product and Af = fft(A, 3)
refers to the fast Fourier transform of tensor A along the
3-rd dimension, while A = ifft(Af , 3) is the inverse oper-
ation. Therefore, the t-SVD of a tensor can be efficiently
computed via performing SVD on its fast Fourier transform
then transforming the resultant component back to original
domain, which is formatted to the pseudocode of Alg. 1.

8. Optimization
Respect to the solution of G-subproblem of Section 4.3, the
detailed derivations are provided in the following. With fix-
ing the latent representations {Hv}Vv=1, tensor G and La-
grange multiplier W , the problem of Eq. (14) can be for-
mulated into

min
G

λ

ρ
∥G∥⊛ +

1

2
∥G − P∥2F . (27)

where P = H−W/ρ. In Fourier domain, the optimization
problem of Eq. (27) can be transformed into

min
Gf

λ

ρ
∥bdiag(Gf )∥⊛ +

1

2V
∥Gf − Pf∥2F , (28)

which can be decomposed into V sub-optimizations by con-
sidering one frontal slice a time, i.e.

min
G(v)
f

λV

ρ
∥G(v)

f ∥∗ +
1

2
∥G(v)

f − P(v)
f ∥2F . (29)

Theorem 1 [1] For each τ ≥ 0 and Y ∈ Rn1×n2 , the
singular value shrinkage operator obeys

Dτ (Y) = argmin
X

1

2
∥X−Y∥2F + τ∥X∥∗. (30)

Here, the operator can be computed via

Dτ (Y) = U Cτ (S) V⊤, (31)

in which USV⊤ = Y is the Singular Value Decomposition
(SVD) and Cτ (S) = max{0, S− τ}.

It is obvious that Eq. (29) is a Singular Value Thresholding
(SVT) problem whose solution is given in Theorem 1. Thus,
the solution of G(v)

f can be obtained as

G(v)
f = U (v)

f Cρ,λ(S(v)
f )V(v)⊤

f (32)

where

U (v)
f S(v)

f V(v)⊤
f = P(v)

f

Cρ,λ(S(v)
f ) = max{0, S(v)

f − λV/ρ}.
(33)

Finally, the viarable G is computed by

G = ifft(Gf , 3). (34)



Table 5. Validation (NMI) on inadvertent label use by applying the tensor rotation trick. Note that, the arrows ↓ and ↑ represent performance
decrease and increase, respectively.

Dataset ASR-ETR S2MVTC TBGL Orth-NTF
Sort Shuffle Gap Sort Shuffle Gap Sort Shuffle Gap Sort Shuffle Gap

ORL 95.30 90.98 4.32 ↓ Error Error Error 79.50 70.15 9.36 ↓ 84.45 57.40 27.05 ↓
HW 99.62 76.75 22.87 ↓ 92.47 64.40 28.07 ↓ 72.15 70.39 1.76 ↓ 82.55 58.15 24.40 ↓
BDGP 96.57 23.85 72.72 ↓ 97.97 7.44 90.54 ↓ OT OT OT Error Error Error
ALOI 91.53 76.08 15.45 ↓ 78.87 67.86 11.01 ↓ OT OT OT 83.25 51.83 31.42 ↓
DryBean 86.17 61.20 24.96 ↓ 76.87 38.16 38.71 ↓ OT OT OT 54.08 8.58 45.50 ↓
AwA 85.76 10.91 74.85 ↓ 72.46 5.88 66.57 ↓ OT OT OT 81.52 2.93 78.59 ↓
YtFace 89.24 1.65 87.59 ↓ 74.23 8.84 65.39 ↓ OT OT OT OT OT OT

Table 6. Validation (Purity) on inadvertent label use by applying the tensor rotation trick. Note that, the arrows ↓ and ↑ represent
performance decrease and increase, respectively.

Dataset ASR-ETR S2MVTC TBGL Orth-NTF
Sort Shuffle Gap Sort Shuffle Gap Sort Shuffle Gap Sort Shuffle Gap

ORL 91.25 84.50 6.75 ↓ Error Error Error 74.50 63.45 11.05 ↓ 69.75 43.15 26.60 ↓
HW 99.85 87.15 12.70 ↓ 89.30 63.85 25.45 ↓ 77.60 76.00 1.60 ↓ 82.55 68.15 14.40 ↓
BDGP 99.04 50.08 48.96 ↓ 99.44 33.40 66.04 ↓ OT OT OT Error Error Error
ALOI 83.43 61.13 22.30 ↓ 55.16 56.92 1.76 ↑ OT OT OT 66.82 43.00 23.83 ↓
DryBean 91.17 74.23 16.94 ↓ 84.62 56.26 28.37 ↓ OT OT OT 73.59 34.02 39.57 ↓
AwA 76.42 11.55 64.87 ↓ 57.01 7.29 49.72 ↓ OT OT OT 67.03 5.99 61.04 ↓
YtFace 88.36 26.64 61.72 ↓ 75.61 27.01 48.59 ↓ OT OT OT OT OT OT

9. Dataset and completing methods

In the experiments, we test the proposed LMTC method on
seven popular benchmark datasets which are briefly intro-
duced as follows:
1. ORL2 [39] contains 400 face images from 40 categories,

where three types of features, including 4096-D Inten-
sity, 3304-D Local Binary Patterns (LBP) and 6750-D
Gabor, are used as different views.

2. HW3 [42] collects 2000 digits, where six features are ex-
tracted, including 76-D Fourier Coefficient, 216-D Pro-
file Correlation, 64-D Karhunen-Love Coefficient, 240-
D Pixel Average, 47-D Zernike Moment and 6-D Mor-
phological features.

3. BDGP4 [40] is a dataset of images of drosophila em-
bryos with 2500 samples of five classes, where each
sample has 1000-D, 500-D and 250-D visual features.

4. ALOI5 [12] consists of 11025 images of 100 small ob-
jects where four types of features, including RGB, HSV,
Color Similiarity and Haralick features are used.

2https : / / www . cl . cam . ac . uk / research / dtg /
attarchive/facedatabase.html

3https : / / archive . ics . uci . edu / ml / datasets /
Multiple+Features/

4https://www.fruitfly.org/
5https://aloi.science.uva.nl/

5. DryBean6 [20] collects 13611 dry beans of seven differ-
ent types where two features, including 12-D and 4-D
shape forms, are extracted.

6. AwA7 [21] contains 30475 images of 50 animals classes
with six extracted features, including 2688-D Color His-
togram, 2000-D Local Self-Similarity, 252-D Pyramid
Histogram of Oriented Gradient (PHOG), 2000-D Scale
Invariant Feature Transform (SIFT), 2000-D color SIFT
and 2000-D Speeded Up Robust Features (SURF) fea-
tures.

7. YtVideo8 [34] consists of 101499 Youtube videos with
five types of features, including 64-D audio volume,
512-D vision Cuboids Histogram, 64-D vision His-
togram (HIST), 647-D vision Histogram of Oriented
Gradient (HOG), 838-D vision MISC features.

Meanwhile, the proposed LMTC method is also compared
with ten classic and novel large-scale multi-view clustering
approaches, including
1. RMKC [2] extends the standard k-means into multi-

view setting, as well, employing the structured sparsity-
inducing norm to enhance its robustness to data outliers.

6https://archive.ics.uci.edu/dataset/602/dry+
bean+dataset

7https://cvml.ist.ac.at/AwA/
8http : / / archive . ics . uci . edu / ml / datasets /

YouTube+Multiview+Video+Games+Dataset



2. BMVC [53] collaboratively encodes multi-view data
into compact binary representations, then clusters them
with binary matrix factorization.

3. LMSC [17] employs anchor technique to approximate
the self-representation matrix of subspace clustering al-
gorithm, making it feasible on large-scale multi-view
data.

4. OPMC [27] proposes a matrix tri-factorization method
to integrate the complementary information of different
views by utilizing the discrete label matrix into its objec-
tive function.

5. EOMSC [32] combines anchor learning and graph con-
struction into a uniform framework and imposes a graph
connectivity constraint, not only boosting the clustering
perforamnce but also able to compute the labels directly
without any post-processing procedures.

6. MCHBG [54] employs the high-order bipartite graph to
reveal richer clustering structures while keep the overall
computational complexity in linear to the number of data
samples.

7. ASR-ETR [16] constructs the anchor-representation ten-
sor rather than the self-representation strategy to reduce
the time complexity and adopts the Anchor Structure
Regularization (ASR) and Enhanced Tensor Rank (ETR)
to capture the multi-view highorder correlation.

8. S2MVTC [33] constructs the embedding feature tensor
by stacking the embedding features of different views
and adopts a novel tensor low-frequency approximation
(TLFA) operator to incorporates graph similarity into
embedding feature learning.

9. TBGL [49] constructs the bipartite with a variance-based
de-correlation anchor selection strategy and exploits the
similarity of inter-view by minimizing the tensor Schat-
ten p-norm while that of intra-view by using the L1,2-
norm minimization regularization and connectivity con-
straint.

10. Orth-NTF [22] develops a novel multi-view clustering
based on orthogonal nonnegative tensor factorization
with one-side orthogonal constraint.

10. Result
In Section 4.1 of the main body, only the ACC results are
provided. Here we present the NMI and Purity results as
supplementary. It can be observed that they follow the same
trend with ACC results, further validating the fact that data
labels are inadvertently used in existing multi-view tensor
clustering approaches.


